每日一题[924]比等差数列

在数列$\{a_n\}$中,若对任意的$n\in\mathbb N^*$,都有$\dfrac{a_{n+2}}{a_{n+1}}-\dfrac{a_{n+1}}{a_n}=t$,其中$t$为常数,则称数列$\{a_n\}$为比等差数列,$t$称为比公差.现给出以下命题:
(1)等比数列一定是比等差数列,等差数列不一定是比等差数列;
(2)若数列$\{a_n\}$满足$a_n=\dfrac{2^{n-1}}{n^2}$,则数列$\{a_n\}$是比等差数列,且比公差$t=\dfrac 12$;
(3)若数列$\{a_n\}$满足$a_1=1$,$a_2=2$,$a_n=a_{n-1}+a_{n-2}$($n\geqslant 3$),则该数列不是比等差数列;
(4)若$\{a_n\}$是等差数列,$\{b_n\}$是等比数列,则数列$\{a_nb_n\}$是比等差数列.
其中所有真命题的序号是_______.

cover正确答案是(1)(3).

分析与解 对于命题(1),根据等比数列的定义,等比数列一定是比公差为$0$的比等差数列;而对等差数列而言,设其通项公式为\[a_n=a_0+nd,n\in\mathbb N^*,\]则有\[\dfrac{a_{n+2}}{a_{n+1}}-\dfrac{a_{n+1}}{a_n}=\dfrac{a_0+(n+2)d}{a_0+(n+1)d}-\dfrac{a_0+(n+1)d}{a_0+nd}=\dfrac{-d^2}{\left[a_0+(n+1)d\right]\cdot \left(a_0+nd\right)},\]因此等差数列$\{a_n\}$是比等差数列的充要条件是“$d=0$且$a_1\ne 0$”.

对于命题(2),有\[\dfrac{a_{n+2}}{a_{n+1}}-\dfrac{a_{n+1}}{a_n}=\dfrac{2(n+1)^2}{(n+2)^2}-\dfrac{2n^2}{(n+1)^2}=\dfrac{2n^2+4n+1}{(n+2)^2\cdot (n+1)^2},\]因此数列$\{a_n\}$不是比等差数列.

对于命题(3),有\[\dfrac{a_{n+2}}{a_{n+1}}-\dfrac{a_{n+1}}{a_n}=\dfrac{a_n+a_{n+1}}{a_{n+1}}-\dfrac{a_{n+1}}{a_n}=\dfrac{a_n}{a_{n+1}}-\dfrac{a_{n+1}}{a_n}+1,\]因此$\dfrac{a_{n+2}}{a_{n+1}}-\dfrac{a_{n+1}}{a_n}$为常数等价于$\dfrac{a_n}{a_{n+1}}$是常数(因为$\dfrac {a_n}{a_{n+1}}>0$,而$y=x-\dfrac 1x,x>0$为增函数),而后者显然不成立,因此该数列不是比等差数列.

对于命题(4),设数列$\{a_n\}$和$\{b_n\}$的通项分别为\[a_n=a_0+nd,b_n=b_0\cdot q^n,n\in\mathbb N^*,\]则\[\dfrac{a_{n+2}b_{n+2}}{a_{n+1}b_{n+1}}-\dfrac{a_{n+1}b_{n+1}}{a_nb_n}=q\cdot \left[\dfrac{a_0+(n+2)d}{a_0+(n+1)d}-\dfrac{a_0+(n+1)d}{a_0+nd}\right]=\dfrac{-d^2\cdot q}{\left[a_0+(n+1)d\right]\cdot \left(a_0+nd\right)},\]因此数列$\{a_nb_n\}$是比等差数列的充要条件是“$d=0$且$a_1\ne 0$”.

此条目发表在每日一题分类目录,贴了标签。将固定链接加入收藏夹。

发表回复