求证:数列{(1+1n)n}收敛.
证明 法一 二项式定理
根据二项式定理,有(1+1n)n=1+C1n⋅1n+C2n⋅1n2+⋯+Cnn⋅1nn=1+1+12!⋅(1−1n)+⋯+1n!⋅(1−1n)(1−2n)⋯(1−n−1n),因此数列{(1+1n)n}单调递增.另一方面,有(1+1n)n<2+12!+13!+⋯+1n!<2+11⋅2+12⋅3+⋯+1(n−1)⋅n<3,因此数列{(1+1n)n}有上界3.综上所述,命题得证.
法二 均值不等式
根据均值不等式,有(1+1n)n=(1+1n)⋅(1+1n)⋯(1+1n)⏟⋅1<[(1+1n)⋅n+1n+1]n+1=(1+1n+1)n+1,因此数列{(1+1n)n}单调递增.另一方面,有14(1+1n)n=(1+1n)⋅(1+1n)⋯(1+1n)⏟⋅12⋅12<[(1+1n)⋅n+12+12n+2]n+2=1,因此数列{(1+1n)n}有上界4.综上所述,命题得证.
法三 伯努利不等式
根据伯努利不等式,有(1+1n+1)n+1(1+1n)n=n+2n+1⋅(n+2n+1⋅nn+1)n=n+2n+1⋅(1−1n2+2n+1)n>n+2n+1⋅(1−nn2+2n+1)=n3+3n2+3n+2n3+3n2+3n+1>1,因此数列{(1+1n)n}单调递增.另一方面,有(1+1n)n+1(1+1n+1)n+2=n+1n+2⋅(n+1n⋅n+1n+2)n+1=n+1n+2⋅(1+1n2+2n)n+1>n+1n+2⋅(1+n+1n2+2n)=(n+1)(n2+3n+1)n(n+2)2>1,于是数列{(1+1n)n+1}单调递减,进而有(1+1n)n<(1+1n)n+1⩽4,因此数列{(1+1n)n}有上界4.综上所述,命题得证.
法四 辅助不等式
我们熟知an+1−bn+1=(a−b)(an+an−1b+an−2b2+⋯+bn),设a>b>0,则有an+1−bn+1<(a−b)⋅(n+1)an,即bn+1>an⋅[(n+1)b−na].令a=1+1n,b=1+1n+1,则(1+1n+1)n+1>(1+1n)n,从而数列{(1+1n)n}单调递增.另一方面,令a=1+12n,b=1,可得1>(1+12n)n⋅12,即(1+12n)2n<4,因此数列{(1+1n)n}有上界4.综上所述,命题得证.