每日一题[813]数列收敛

求证:数列{(1+1n)n}收敛.


cover

证明 法一 二项式定理

根据二项式定理,有(1+1n)n=1+C1n1n+C2n1n2++Cnn1nn=1+1+12!(11n)++1n!(11n)(12n)(1n1n),因此数列{(1+1n)n}单调递增.另一方面,有(1+1n)n<2+12!+13!++1n!<2+112+123++1(n1)n<3,因此数列{(1+1n)n}有上界3.综上所述,命题得证.

法二 均值不等式

根据均值不等式,有(1+1n)n=(1+1n)(1+1n)(1+1n)1<[(1+1n)n+1n+1]n+1=(1+1n+1)n+1,因此数列{(1+1n)n}单调递增.另一方面,有14(1+1n)n=(1+1n)(1+1n)(1+1n)1212<[(1+1n)n+12+12n+2]n+2=1,因此数列{(1+1n)n}有上界4.综上所述,命题得证.

法三 伯努利不等式

根据伯努利不等式,有(1+1n+1)n+1(1+1n)n=n+2n+1(n+2n+1nn+1)n=n+2n+1(11n2+2n+1)n>n+2n+1(1nn2+2n+1)=n3+3n2+3n+2n3+3n2+3n+1>1,因此数列{(1+1n)n}单调递增.另一方面,有(1+1n)n+1(1+1n+1)n+2=n+1n+2(n+1nn+1n+2)n+1=n+1n+2(1+1n2+2n)n+1>n+1n+2(1+n+1n2+2n)=(n+1)(n2+3n+1)n(n+2)2>1,于是数列{(1+1n)n+1}单调递减,进而有(1+1n)n<(1+1n)n+14,因此数列{(1+1n)n}有上界4.综上所述,命题得证.

法四 辅助不等式

我们熟知an+1bn+1=(ab)(an+an1b+an2b2++bn),a>b>0,则有an+1bn+1<(ab)(n+1)an,bn+1>an[(n+1)bna].a=1+1nb=1+1n+1,则(1+1n+1)n+1>(1+1n)n,从而数列{(1+1n)n}单调递增.另一方面,令a=1+12nb=1,可得1>(1+12n)n12,(1+12n)2n<4,因此数列{(1+1n)n}有上界4.综上所述,命题得证.

此条目发表在每日一题分类目录,贴了标签。将固定链接加入收藏夹。

发表回复