每日一题[85] 构造递推解通项

设数列\(\left\{a_n\right\}\)的前\(n\)项和为\(S_n\),已知\(a_1=1\),\(a_2=6\),\(a_3=11\),且\[\left(5n-8\right)S_{n+1}-\left(5n+2\right)S_n=An+B,n=1,2,\cdots,\]其中\(A\)、\(B\)是常数.

(1)求\(A\)与\(B\)的值;

(2)求数列\(\left\{a_n\right\}\)的通项公式.


cover(1)分别令\(n=1\)和\(n=2\)可得\(A=-20\),\(B=-8\).

(2)根据已知,有\[\begin{split}(5n-8)S_{n+1}-(5n+2)S_n&=-20n-8\\(5n-3)S_{n+2}-(5n+7)S_{n+1}&=-20(n+1)-8\end{split}\]两式相减可得\[(5n-3)S_{n+2}-(10n-1)S_{n+1}+(5n+2)S_n=-20,\]即\[(5n-3)\left(S_{n+2}-S_{n+1}\right)-(5n+2)\left(S_{n+1}-S_{n}\right)=-20,\]也即\[(5n-3)a_{n+2}-(5n+2)a_{n+1}=-20.\]

法一

将上述等式变形为\[(5n-3)\left(a_{n+2}-4\right)-(5n+2)\left(a_{n+1}-4\right)=0,\]从而\[\dfrac{a_{n+2}-4}{a_{n+1}-4}=\dfrac{5n+2}{5n-3},\]进而由累乘法不难得到\[\dfrac{a_n-4}{a_1-4}=\dfrac{5n-8}{-3},\]因此\[a_n=5n-4(n\in\mathcal N^*).\]

法二

由上述等式得\[(5n+2)a_{n+3}-(5n+7)a_{n+2}=-20,\]两式相减得\[(5n+2)a_{n+3}-(10n+4)a_{n+2}+(5n+2)a_{n+1}=0,\]即\[\left(a_{n+3}-a_{n+2}\right)=\left(a_{n+2}-a_{n+1}\right),\]于是数列\(\left\{a_n\right\}\)从第\(2\)项起为等差数列.

因此可得\(a_n=5n-4(n\in\mathcal N^*)\).

此条目发表在每日一题分类目录,贴了标签。将固定链接加入收藏夹。

发表回复