已知数列{an}中a1=2,an+1=(√2−1)(an+2),n=1,2,3,⋯.
(1) 求{an}的通项公式;
(2) 若数列{bn}中,b1=2,bn+1=3bn+42bn+3,证明:√2<bn⩽a4n−3,n=1,2,3,⋯.
分析与解 (1) 递推公式即an+1−√2=(√2−1)(an−√2),
进而不难求出an=√2⋅[(√2−1)n+1],n=1,2,3,⋯.
(2) 设f(x)=3x+42x+3,则当x∈(√2,2]时,f(x)∈(√2,2],且函数f(x)在区间(√2,2]上单调递增.因此不难证明{bn}单调递减(由b2<b1,可以得到f(b2)=b3<f(b1)=b2,所以由数学归纳法容易证得{bn}单调递减),且bn∈(√2,2].利用f(x)=x的不动点x=√2将递推公式改造为bn+1−√2=3−2√22bn+3⋅(bn−√2)<3−2√22√2+3⋅(bn−√2)=(√2−1)4⋅(bn−√2),
于是取n=1,2,3,⋯,n−1累乘可得bn−√2⩽(√2−1)4n−4⋅(2−√2)=a4n−3−√2,
因此原命题得证.
(2)另法 由f(x)=3x+42x+3=x解得不动点x=±√2.通过不动点改造数列得bn+1−√2=(3−2√2)⋅bn−√22bn+3,bn+1+√2=(3+2√2)⋅bn+√22bn+3
两式相比得bn+1−√2bn+1+√2=3−2√23+2√2⋅bn−√2bn+√2.
于是得bn−√2bn+√2=2−√22+√2⋅(3−2√23+2√2)n−1=(√2−1)4n−2.
从而解得bn=1+m4n−21−m4n−2⋅√2,其中m=√2−1.直接可以得到bn>√2,右边不等式等价于证明1+m4n−21−m4n−2⩽1+m4n−3.
整理得m4n−3−2m4n−2−m8n−5=m4n−3(1−2m−m4n−2)⩾0,
也即证明m4n−2=(√2−1)4n−2⩽1−2m=(√2−1)2.
因为4n−2⩾2,所以此不等式显然成立.