每日一题[588]代数式的最值

已知$a\sqrt c>2b>0$,则$a^2+\dfrac{4(c^2+1)}{b(a\sqrt c-2b)}$的最小值是______.


cover分析与解 法一 换元看结构

设$a\sqrt c-2b=x$,$2b=y$,则$x,y>0$,且$a\sqrt c=x+y$,于是\[\begin{split} a^2+\dfrac{4(c^2+1)}{b(a\sqrt c-2b)}&=\dfrac{(x+y)^2}{c}+\dfrac{8(c^2+1)}{xy}\\ &\geqslant \dfrac{4xy}{c}+\dfrac{16c}{xy}\\ &\geqslant 2\sqrt {\dfrac{4xy}{c}\cdot\dfrac{16c}{xy}}\\ &=16,\end{split} \]等号当$x=y=\sqrt 2$,$c=1$,即$a=2\sqrt 2$,$b=\dfrac{\sqrt 2}2$,$c=1$时取得.


法二 各个击破

考虑到$b$都在分母上,有$$\dfrac 12\cdot 2b(a\sqrt c-2b)\leqslant \dfrac 12\left(\dfrac {2b+a\sqrt c-2b}{2}\right )^2=\dfrac 18a^2c,$$于是\[\begin{split}a^2+\dfrac{4(c^2+1)}{b(a\sqrt c-2b)}\geqslant &a^2+\dfrac {32}{a^2}\cdot\dfrac {c^2+1}{c}\\\geqslant &a^2+\dfrac {32}{a^2}\cdot\dfrac {2c}{c}=a^2+\dfrac{64}{a^2}\\\geqslant &2\sqrt{a^2\cdot\dfrac {64}{a^2}}=16.\end{split}\]三个等号依次当$b=\dfrac 14a\sqrt c$,$c=1$以及$a=2\sqrt 2$时取到.

此条目发表在每日一题分类目录,贴了标签。将固定链接加入收藏夹。

发表回复