已知数列{an}中,an>1,a1=2,a2n+1−an+1−a2n+1=0.
(1)求证:n+74⩽;
(2)求证:\sum\limits_{k=1}^n\dfrac{1}{2a_k^2-3}<1.
分析 观察第(1)小题,可知该不等式的本质就是对数列\{a_n\}增长速度a_{n+1}-a_n的估计,因此考虑研究数列的差分.
证明 (1)根据题意,有a_{n+1}=\dfrac{1+\sqrt{1-4(1-a_n^2)}}{2}=\dfrac 12+\sqrt{a_n^2-\dfrac 34},由于当a_n>1时,有a_n^2-\dfrac 34>\left(a_n-\dfrac 12\right)^2,于是a_{n+1}>a_n,也即\{a_n\}单调递增.
考虑a_{n+1}-a_n=\dfrac 12+\sqrt{a_n^2-\dfrac 34}-a_n=\dfrac 12-\dfrac 34\cdot \dfrac{1}{\sqrt{a_n^2-\dfrac 34}+a_n},于是\dfrac 27<a_2-a_1\leqslant a_{n+1}-a_n<\dfrac 12,进而可得\dfrac{2n+12}7\leqslant a_n<a_{n+1}\leqslant \dfrac{n+4}2,这实际上是一个比题中不等式更强的不等式,因此命题得证.
(2)利用(1)左边的不等式,可得(2a_{n+1}^2-3)-(2a_n^2-3)=2a_{n+1}-2>\dfrac {n+4}2,因此当n\geqslant 2时,有2a_n^2-3>5+\dfrac 52+\dfrac 62+\cdots +\dfrac{n+3}2=\dfrac 14(n^2+7n+12),因此\sum_{k=1}^n\dfrac{1}{2a_k^2-3}\leqslant \sum_{k=1}^n\dfrac{4}{(k+3)(k+4)}=\sum_{k=1}^n\left(\dfrac 4{k+3}-\dfrac 4{k+4}\right)<1,原命题得证.