已知在数列{an}中,a1=2,ap+aq=ap+q(p,q∈N∗).
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=1,bn+1=an2bn,求证:1b1+1b2+⋯+1bn⩾√2an−1.
解与证明 (1)令p=1,q=n,则有∀n∈N∗,an+1=an+a1=an+2,
于是an=2n(n∈N∗).
(2)题意即bn+1=nbn,求证:1b1+1b2+⋯+1bn⩾2√n−1.
考虑利用裂项求和,由于bnbn+1=n,bn+1bn+2=n+1,
于是bn+1(bn+2−bn)=1,
从而1bn+1=bn+2−bn,
于是1b1+1b2+⋯+1bn=1+(b3−b1)+(b4−b2)+⋯+(bn+1−bn−1)=1−b1−b2+bn+bn+1⩾2√bnbn+1−1=2√n−1,
因此不等式得证.