每日一题[499]裂项求和

已知在数列{an}中,a1=2ap+aq=ap+q(p,qN).

(1)求数列{an}的通项公式;

(2)若数列{bn}满足b1=1bn+1=an2bn,求证:1b1+1b2++1bn2an1.


cover 解与证明    (1)令p=1q=n,则有nN,an+1=an+a1=an+2,

于是an=2n(nN).

(2)题意即bn+1=nbn,求证:1b1+1b2++1bn2n1.

考虑利用裂项求和,由于bnbn+1=n,bn+1bn+2=n+1,

于是bn+1(bn+2bn)=1,
从而1bn+1=bn+2bn,
于是1b1+1b2++1bn=1+(b3b1)+(b4b2)++(bn+1bn1)=1b1b2+bn+bn+12bnbn+11=2n1,
因此不等式得证.

此条目发表在每日一题分类目录,贴了, 标签。将固定链接加入收藏夹。

发表回复