每日一题[399]裂项求和

已知函数$f(x)$是定义在区间$(-1,1)$上的函数,且满足下列性质:

①$f(x)$是定义在区间$(-1,1)$上的增函数;

②对于定义域内的任意实数$x,y$满足$$f(x)+f(y)=f\left(\dfrac {x+y}{1+xy}\right ).$$(1)求$f(0)$的值,判断并证明$f(x)$的奇偶性;

(2)若$f\left(\dfrac 12\right )=1$,试比较$$f\left(\dfrac 15\right )+f\left(\dfrac {1}{11}\right )+f\left(\dfrac {1}{19}\right )+f\left(\dfrac {1}{29}\right )+\cdots+f\left(\dfrac {1}{89}\right )$$与$1$的大小.


cover

分析 第(1)小题比较简单,直接赋值即可:

令$x=y=0$得$f(0)=0$;令$y=-x$,得$f(x)$为奇函数;

关键是第(2)小题的求和,尝试倒序相加,没有结果;分析要求和函数值对应的自变量$$\dfrac 15,\dfrac {1}{11},\dfrac {1}{19},\cdots,\dfrac {1}{89},$$它们的通项公式为$$a_n=\dfrac {1}{n^2+n-1},n=2,3,\cdots,9.$$

尝试对通项进行裂项$$\dfrac {1}{n^2+n-1}=\dfrac {\frac{1}{n^2+n}}{1-\frac{1}{n^2+n}}=\dfrac {\frac 1n-\frac{1}{n+1}}{1-\frac{1}{n(n+1)}}.$$

再借助题目中的式子,将自变量的裂项转化成函数值的裂项即可.

 (2)由(1)知$$f(x)-f(y)=f(x)+f(-y)=f\left(\dfrac {x-y}{1-xy}\right ).$$又因为

$$\dfrac {1}{n^2+n-1}=\dfrac {\frac 1n-\frac{1}{n+1}}{1-\frac{1}{n(n+1)}},$$

所以$$f\left(\dfrac {1}{n^2+n-1}\right )=f\left(\dfrac 1n\right )-f\left(\dfrac {1}{n+1}\right ).$$记$$S=f\left(\dfrac 15\right )+f\left(\dfrac {1}{11}\right )+f\left(\dfrac {1}{19}\right )+f\left(\dfrac {1}{29}\right )+\cdots+f\left(\dfrac {1}{89}\right ),$$则$$\begin{split} S&=f\left(\dfrac 12\right )-f\left(\dfrac 13\right )+f\left(\dfrac 13\right )-f\left(\dfrac 14\right )+\cdots+f\left(\dfrac 19\right )-f\left(\dfrac {1}{10}\right )\\&=f\left(\dfrac 12\right )-f\left(\dfrac {1}{10}\right ).\end{split} $$因为$f(x)$是$(-1,1)$上的增函数,所以$$f\left(\dfrac {1}{10}\right )>f(0)=0,$$所以$S<f\left(\dfrac 12\right )=1$.

此条目发表在每日一题分类目录,贴了标签。将固定链接加入收藏夹。

发表回复