已知 $a,b,c>0$ 且 $a^2+b^2=c^2$,则使不等式 $\dfrac1{32a}+\dfrac{1}{32b}+\dfrac 1c\geqslant \dfrac k{a+b+c}$ 恒成立的实数 $k$ 的最大值是_____.
答案 $\dfrac{41}{16}$.
解析 设 $\dfrac ac=\cos\theta$,$\dfrac bc=\sin\theta$,$\theta\in\left(0,\dfrac{\pi}2\right)$,则题意即求\[m=\left(\dfrac1{32a}+\dfrac{1}{32b}+\dfrac 1c\right)(a+b+c)=\dfrac{17}{16}+\dfrac{(32\sin\theta\cos\theta+1)(\sin\theta+\cos\theta)+1}{32\sin\theta\cos\theta}\]的最小值.设 $\sin\theta+\cos\theta=t$,$t\in\left(-\dfrac 12,\sqrt 2\right]$,则 $\sin\theta\cos\theta=\dfrac{t^2-1}2$,且\[m=\dfrac{17}{16}+\dfrac{(16(t^2-1)+1)t+1}{16(t^2-1)}=\dfrac{17}{16}+\dfrac{16t(t-1)+1}{16(t-1)}=\dfrac{33}{16}+(t-1)+\dfrac{1}{16(t-1)}\geqslant \dfrac{41}{16},\]等号当 $t=\dfrac 54$ 时取得 $^{[1]}$,因此所求实数 $k$ 的最大值为 $\dfrac{41}{16}$.
备注 $[1]$ 此题条件虽然关于 $a,b$ 对称,但取等时 $\theta\ne \dfrac{\pi}4$,也即取等条件并非 $a=b$.