每日一题[2713]二阶周期点

设函数 f(x)={1ax,0 a 为常数且 a \in \left(0,1\right)

1、当 a = \dfrac{1}{2} 时,求 f\left( {f\left( {\dfrac{1}{3}} \right)} \right)

2、若 {x_0} 满足 f\left(f\left({x_0}\right)\right) = {x_0},但 f\left({x_0}\right) \ne {x_0},则称 {x_0}f\left(x\right) 的二阶周期点,证明:函数 f\left(x\right) 有且仅有两个二阶周期点,并求出二阶周期点 {x_1},{x_2}

3、对于 (2) 中的 {x_1},{x_2},设 A\left({x_1},f\left(f\left({x_1}\right)\right)\right)B\left({x_2},f\left(f\left({x_2}\right)\right)\right)C\left({a^2},0\right),记 \triangle ABC 的面积为 S\left(a\right),求 S\left(a\right) 在区间 \left[ {\dfrac{1}{3},\dfrac{1}{2}} \right] 上的最大值和最小值.

解析

1、当 a = \dfrac{1}{2} 时,f\left( {\dfrac{1}{3}} \right) = \dfrac{2}{3} ,所以f\left( {f\left( {\dfrac{1}{3}} \right)} \right)= f\left( {\dfrac{2}{3}} \right)= 2\left( {1 - \dfrac{2}{3}} \right) = \dfrac{2}{3}.

2、根据题意,得 f\left(f\left(x\right)\right) = \begin{cases}\dfrac{1}{a^2}x,&0 \leqslant x \leqslant {a^2}, \\ \dfrac{1}{a\left(1 - a\right)}\left(a - x\right),&{a^2} < x \leqslant a, \\ \dfrac{1}{{{{\left(1 - a\right)}^2}}}\left(x - a\right),&a < x < {a^2} - a + 1, \\ \dfrac{1}{a\left(1 - a\right)}\left(1 - x\right),&{a^2} - a + 1 \leqslant x \leqslant 1. \\ \end{cases}

情形一    当 0 \leqslant x \leqslant {a^2} 时,由 \dfrac{1}{a^2}x = x,解得 x = 0.因为 f\left(0\right) = 0,故 x = 0 不是 f\left(x\right) 的二阶周期点;

情形二    当 {a^2} < x \leqslant a 时,由 \dfrac{1}{a\left(1 - a\right)}\left(a - x\right) = x,解得x = \dfrac{a}{{ - {a^2} + a + 1}} \in \left({a^2},a\right).因为f\left( {\dfrac{a}{{ - {a^2} + a + 1}}} \right) = \dfrac{1}{a} \cdot \dfrac{a}{{ - {a^2} + a + 1}} = \dfrac{1}{{ - {a^2} + a + 1}} \ne \dfrac{a}{{ - {a^2} + a + 1}},x = \dfrac{a}{{ - {a^2} + a + 1}}f\left(x\right) 的二阶周期点;

情形三    当 a < x < {a^2} - a + 1 时,由 \dfrac{1}{{{{\left(1 - a\right)}^2}}}\left(x - a\right) = x,解得x = \dfrac{1}{2 - a} \in \left(a,{a^2} - a + 1\right).因为f\left( {\dfrac{1}{2 - a}} \right) = \dfrac{1}{1 - a} \cdot \left( {1 - \frac{1}{2 - a}} \right) = \dfrac{1}{2 - a},x = \dfrac{1}{2 - a} 不是 f\left(x\right) 的二阶周期点;

情形四    当 {a^2} - a + 1 \leqslant x \leqslant 1 时,由 \dfrac{1}{a\left(1 - a\right)}\left(1 - x\right) = x,解得x = \dfrac{1}{{ - {a^2} + a + 1}} \in \left({a^2} - a + 1,1\right).因为 f\left( {\dfrac{1}{{ - {a^2} + a + 1}}} \right) = \dfrac{1}{1 - a} \cdot \left( {1 - \dfrac{1}{{ - {a^2} + a + 1}}} \right) = \dfrac{a}{{ - {a^2} + a + 1}} \ne \dfrac{1}{{ - {a^2} + a + 1}} ,x = \dfrac{1}{{ - {a^2} + a + 1}}f\left(x\right) 的二阶周期点.

综上所述,函数 f\left(x\right) 有且仅有两个二阶周期点,分别为 {x_1} = \dfrac{a}{{ - {a^2} + a + 1}}{x_2} = \dfrac{1}{{ - {a^2} + a + 1}}

3、由 (2)A\left( {\dfrac{a}{{ - {a^2} + a + 1}},\dfrac{a}{{ - {a^2} + a + 1}}} \right),B\left( {\dfrac{1}{{ - {a^2} + a + 1}},\dfrac{1}{{ - {a^2} + a + 1}}} \right),\begin{split}S\left(a\right) &= \dfrac{1}{2} \cdot \dfrac{{{a^2}\left(1 - a\right)}}{{ - {a^2} + a + 1}} ,\\ S'\left(a\right) &= \dfrac{1}{2} \cdot \dfrac{{a\left({a^3} - 2{a^2} - 2a + 2\right)}}{{{{\left( - {a^2} + a + 1\right)}^2}}},\end{split}因为 a \in \left[ {\dfrac{1}{3},\dfrac{1}{2}} \right],有 {a^2} + a < 1,所以\begin{split}S'\left(a\right) &= \dfrac{1}{2} \cdot \dfrac{{a\left({a^3} - 2{a^2} - 2a + 2\right)}}{{{{\left( - {a^2} + a + 1\right)}^2}}}\\ &= \dfrac{1}{2} \cdot \dfrac{{a\left[\left(a + 1\right){{\left(a - 1\right)}^2} + \left(1 - {a^2} - a\right)\right]}}{{{{\left( - {a^2} + a + 1\right)}^2}}} \\&> 0,\end{split}S\left(a\right) 在区间 \left[ {\dfrac{1}{3},\dfrac{1}{2}} \right] 上单调递增,故 S\left(a\right) 在区间 \left[ {\dfrac{1}{3},\dfrac{1}{2}} \right] 上的最小值为 S\left( {\dfrac{1}{3}} \right) = \dfrac{1}{33},最大值为 S\left( {\dfrac{1}{2}} \right) = \dfrac{1}{20}

此条目发表在每日一题分类目录,贴了标签。将固定链接加入收藏夹。

发表回复