已知 a,b,c>0,且 abc=1,求证:1a2+2b2+3+1b2+2c2+3+1c2+2a2+3⩽.
解析 令 (a,b,c)=\left(\dfrac yz,\dfrac zx,\dfrac xy\right),x,y,z>0,则\begin{split} LHS&=\sum_{\rm cyc}\dfrac{1}{\dfrac{y^2}{z^2}+\dfrac{2z^2}{x^2}+3}\\ &=\sum_{\rm cyc}\dfrac{1}{\left(\dfrac {y^2}{z^2}+\dfrac{z^2}{x^2}\right)+\left(\dfrac{z^2}{x^2}+1\right)+2}\\ &\leqslant \sum_{\rm cyc}\dfrac{1}{\dfrac{2y}{x}+\dfrac{2z}{x}+2}\\ &=\sum_{\rm cyc}\dfrac{x}{2(x+y+z)}\\ &=\dfrac 12,\end{split}因此命题成立.