已知 a,b,c 为整数,24∣a3+b3+c3,求证:120∣a5+b5+c5+4(a+b+c).
解析 令 x1=a,x2=b,x3=c,A=3∑i=1x3i,B=3∑i=1(x5i+4xi),则 B−5A=3∑i=1(x5i+4xi−5x3i)=3∑i=1(x3i−xi)(x2i−4)=3∑i=1[xi(xi+1)(xi−1)(xi+2)(xi−2)].
由于 5 个连续整数的乘积能被 5!=120 整除(考虑组合数 C5n),所以120∣B−5A,
而 120∣5A,故120∣B.