已知 \(\triangle ABC\) 的三个内角分别为 \(A,B,C\) 且 \(C\geqslant \dfrac{\pi}3\),求证:\[\Big(a+b\Big)\Big(\dfrac 1a+\dfrac 1b+\dfrac 1c\Big)\geqslant 4+\dfrac{1}{\sin\dfrac C2}.\]
分析与证明 不妨设 \(A\geqslant B\),令 \(A=x+y\),\(B=x-y\),则\[0\leqslant y<x\leqslant \dfrac{\pi}3.\]设\[M=\Big(a+b\Big)\Big(\dfrac 1a+\dfrac 1b+\dfrac 1c\Big)- 4-\dfrac{1}{\sin\dfrac C2},\]则\[\begin{split} M&=\dfrac ab+\dfrac ba+\dfrac{a+b}c-2-\dfrac{1}{\sin\dfrac C2}\\&=\dfrac{\sin(x+y)}{\sin(x-y)}+\dfrac{\sin(x-y)}{\sin(x+y)}+\dfrac{\sin(x+y)+\sin(x-y)}{\sin 2x}-2-\dfrac{1}{\cos x}\\&=\dfrac{\sin^2(x+y)+\sin^2(x-y)-2\sin(x-y)\sin(x+y)}{\sin(x-y)\sin(x+y)}+\dfrac{2\sin x\cos y}{2\sin x\cos x}-\dfrac{1}{\cos x}\\&=\dfrac{2\sin^2x\cos^2y+2\cos^2x\sin^2y-2\sin^2x+2\sin^2y}{\sin^2x-\sin^2y}-\dfrac{1-\cos y}{\cos x}\\&=\dfrac{4\cos^2x\sin^2y}{\sin^2x-\sin^2y}-\dfrac{1-\cos y}{\cos x}\\&=\dfrac{2\sin^2\dfrac y2}{\cos x\left(\sin^2x-\sin^2y\right)}\cdot \left(8\cos^2\dfrac y2\cos^3x-\sin^2x+\sin^2y\right)\\&\geqslant \dfrac{2\sin^2\dfrac y2}{\cos x\left(\sin^2x-\sin^2y\right)}\cdot\left(8\cos^2\dfrac{\pi}6\cos^2\dfrac{\pi}3-\sin^2\dfrac{\pi}3\right)\\&\geqslant 0,\end{split}\]因此原命题得证.
注 等号当 \(y=0,x=\dfrac{\pi}3\),即 \(A=B=C=\dfrac{\pi}3\) 时取到.