每日一题[862]舍小利以谋远

定义在R上的函数f(x)=4x4x+2Sn=f(1n)+f(2n)++f(n1n),n=2,3,.(1) 求Sn; 

(2) 是否存在常数M>0n,有\dfrac{1}{{{S_2}}} + \dfrac{1}{{{S_3}}} + \cdots + \dfrac{1}{{{S_{n + 1}}}} \leqslant M.


cover

分析与解 (1) 注意到\begin{split}f\left( x \right) + f\left( {1 - x} \right) &= \dfrac{{{4^x}}}{{{4^x} + 2}} + \dfrac{{{4^{1 - x}}}}{{{4^{1 - x}} + 2}} \\&= \dfrac{{{4^x}}}{{{4^x} + 2}} + \dfrac{4}{{4 + 2 \cdot {4^x}}} = 1.\end{split}所以\begin{split}2{S_n} &= \left[ {f\left( {\dfrac{1}{n}} \right) + f\left( {\dfrac{{n - 1}}{n}} \right)} \right] + \left[ {f\left( {\dfrac{2}{n}} \right) + f\left( {\dfrac{{n - 2}}{n}} \right)} \right] + \cdots + \left[ {f\left( {\dfrac{{n - 1}}{n}} \right) + f\left( {\dfrac{1}{n}} \right)} \right]\\& = n - 1.\end{split}所以{S_n} = \dfrac{{n - 1}}{2}

(2) 因为 \dfrac{1}{{{S_2}}} + \dfrac{1}{{{S_3}}} + \cdots + \dfrac{1}{{{S_{n + 1}}}} = \dfrac{2}{1} + \dfrac{2}{2} + \cdots + \dfrac{2}{n}.构造数列\left\{ {{b_n}} \right\}\dfrac{1}{2},\dfrac{1}{4},\dfrac{1}{4},\dfrac{1}{8},\dfrac{1}{8}, \dfrac{1}{8} , \dfrac{1}{8}, \cdots (其中形如\dfrac{1}{{{2^k}}}的项有{2^{k - 1}} 个)截止到最后一个\dfrac{1}{{{2^k}}},共有1 + 2 + {2^2} + \cdots + {2^{k - 1}} = {2^k} - 1项.所以取n = {2^k},则\begin{split}\dfrac 12\sum\limits_{k=2}^{n+1}{\dfrac 1{S_{n + 1}}} &= 1 + \dfrac{1}{2} + \dfrac{1}{3} + \cdots + \dfrac{1}{n}\\& = 1 + \dfrac{1}{2} + \dfrac{1}{3} + \cdots + \dfrac{1}{2^{k}}\\& > 1 + \dfrac{1}{2} + \underbrace {\dfrac{1}{4} + \dfrac{1}{4}}_2 + \underbrace {\dfrac{1}{8} + \dfrac{1}{8} + \cdots + \dfrac{1}{8}}_4 + \cdots + \underbrace {\dfrac{1}{{{2^k}}} + \dfrac{1}{{{2^k}}} + \cdots \dfrac{1}{{{2^k}}}}_{{2^{k - 1}}}\\& = 1 + \dfrac{k}{2}.\end{split}因此不存在常数M > 0\forall n \geqslant 2,有\dfrac{1}{{{S_2}}} + \dfrac{1}{{{S_3}}} + \cdots + \dfrac{1}{{{S_{n + 1}}}} \leqslant M.

此条目发表在每日一题分类目录,贴了标签。将固定链接加入收藏夹。

发表回复