若$0\leqslant 6a,3b,2c\leqslant 8$,$\sqrt{12a}+\sqrt{6b}+\sqrt{4c}=6$,则$\dfrac{1}{1+a^2}+\dfrac{4}{4+b^2}+\dfrac{9}{9+c^2}$的最大值是_______.
分析与解 设$\sqrt{6a}=\sqrt 2x,\sqrt{3b}=\sqrt 2y,\sqrt{2c}=\sqrt 2z$,原题转化为:“已知$x,y,z\in [0,2]$,且$x+y+z=3$,求$\dfrac{9}{9+x^4}+\dfrac{9}{9+y^4}+\dfrac{9}{9+z^4}$的最大值.”借助切线,可以尝试证明辅助不等式$$\dfrac{9}{9+x^4}\leqslant -\dfrac{9}{25}(x-1)+\dfrac 9{10},0\leqslant x\leqslant 2.$$事实上,该不等式等价于$$(x-1)^2\left(2x^3-3x^2-8x-13\right)\leqslant 0,$$而当$x\in [0,3]$时,有$$2x^3-3x^2-8x-13=x^2(x-3)+x\left(x^2-9\right)+x-13<0,$$因此辅助不等式得证.因此$$\dfrac{9}{9+x^4}+\dfrac{9}{9+y^4}+\dfrac{9}{9+z^4}\leqslant \dfrac{27}{10},$$等号当$x=y=z=1$时取得.