1、5个正整数,任意4个的和构成集合{44,45,46,47},求这5个整数.
2、甲乙两人采用五局三胜制比赛,单局甲获胜的概率为p且p>12,甲最终获胜的概率为q,当p为何值时q−p最大?
3、已知f(x)=√22(cosx−sinx)sin(x+π4)−2asinx+b的最大值为1,最小值为−4,求a,b的值.
4、已知f(x)的反函数为f−1(x),g(x)的反函数为g−1(x).
(1)求证:f(g(x))的反函数为g−1(f−1(x));
(2)若f(g(x))为奇函数,求证g−1(f−1(x))也为奇函数.
5、已知椭圆x2a2+y2b2=1(a>b>0),圆x2+y2=b2,过椭圆上的动点M作圆的两条切线,切点分别为P、Q,直线PQ与坐标轴的交点为E、F,求△EOF面积的最小值.
6、已知数列{an}满足an+1=npn+qan,a1=0.
(1)若q=1,求{an}的通项公式;
(2)若|p|<1,|q|<1,求证:数列{an}有界.
7、求证:当x⩽时,n - n{\left( {1 - \dfrac{x}{n}} \right)^n}{{\rm{e}}^x} \leqslant {x^2}.
参考答案
1、设这5个整数分别为{a_1} , {a_2} , {a_3} , {a_4} , {a_5},则
它们任意4个的和(共有5个)之和为4\left( {{a_1} + {a_2} + {a_3} + {a_4} + {a_5}} \right)必为4的倍数.
考虑到44 \equiv 0\left( {\bmod 4} \right),\\45 \equiv 1\left( {\bmod 4} \right),\\46 \equiv 2\left( {\bmod 4} \right),\\47 \equiv 3\left( {\bmod 4} \right),于是这5个整数任意4个的和为44 , 45 , 46 , 46 , 47.因此{a_1} + {a_2} + {a_3} + {a_4} + {a_5} = \dfrac{1}{4}\left( {44 + 45 + 46 + 46 + 47} \right) = 57.这5个整数分别为57 - 44 , 57 - 45 , 57 - 46 , 57 - 46 , 57 - 47即10 , 11 , 11 , 12 , 13.
2、根据题意\begin{split}q &= {\rm C}_2^2{p^2} \cdot p + {\rm C}_3^2{p^2}\left( {1 - p} \right) \cdot p + {\rm C}_4^2{p^2}{\left( {1 - p} \right)^2} \cdot p\\&= {p^3} + 3{p^3}\left( {1 - p} \right) + 6{p^3}{\left( {1 - p} \right)^2}\\&= 6{p^5} - 15{p^4} + 10{p^3},\end{split}于是q - p = 6{p^5} - 15{p^4} + 10{p^3} - p.因此\begin{split}{\left( {6{p^5} - 15{p^4} + 10{p^3} - p} \right)^\prime } &= 30{p^4} - 60{p^3} + 30{p^2} - 1 \\&= 30{p^2}{\left( {p - 1} \right)^2} - 1,\end{split}由p\left( {p - 1} \right) = - \sqrt {\dfrac{1}{{30}}} ,解得p = \dfrac{{1 + \sqrt {1 - 4\sqrt {\dfrac{1}{{30}}} } }}{2}为使得q-p最大的p的值.
3、根据题意\begin{split}f\left( x \right) &= \dfrac{{\sqrt 2 }}{2}\left( {\cos x - \sin x} \right)\left( {\dfrac{{\sqrt 2 }}{2}\sin x + \dfrac{{\sqrt 2 }}{2}\cos x} \right) - 2a\sin x + b\\&= \dfrac{1}{2}\left( {1 - 2{{\sin }^2}x} \right) - 2a\sin x + b\\&= - {\sin ^2}x - 2a\sin x + b + \dfrac{1}{2},\end{split}令y = f\left( x \right),t = \sin x,t \in \left[ { - 1 , 1} \right],则y = - {t^2} - 2at + b + \dfrac{1}{2},考虑到对称轴为t = - a,于是\begin{cases} - a < - 1 \\ {\left. y \right|_{t = - 1}} = 1 \\ {\left. y \right|_{t = 1}} = - 4 \\ \end{cases}\lor\begin{cases} - 1 \leqslant - a < 0 \\ {\left. y \right|_{t = - a}} = 1 \\ {\left. y \right|_{t = 1}} = - 4 \\ \end{cases}\lor\begin{cases} 0 \leqslant - a \leqslant 1 \\ {\left. y \right|_{t= -a}} = 1 \\ {\left. y \right|_{t = - 1}} = - 4 \\ \end{cases}\lor\begin{cases} - a > 1 \\ {\left. y \right|_{t = 1}} = 1 \\ {\left. y\right|_{t = - 1}} = - 4 \\ \end{cases}
解得a = \pm \dfrac{5}{4},b = - 1.
4、(1)设g\left( a \right) = b,f\left( b \right) = c,则f\left( {g\left( a \right)} \right) = c,a = {g^{ - 1}}\left( b \right),b = {f^{ - 1}}\left( c \right),于是a = {g^{ - 1}}\left( {{f^{ - 1}}\left( c \right)} \right).因此f\left( {g\left( x \right)} \right)的反函数为{g^{ - 1}}\left( {{f^{ - 1}}\left( x \right)} \right).
(2)用分析法,{g^{ - 1}}\left( {{f^{ - 1}}\left( x \right)} \right)为奇函数只需要
\begin{split}&\qquad \forall x , {g^{ - 1}}\left( {{f^{ - 1}}\left( x \right)} \right) + {g^{ - 1}}\left( {{f^{ - 1}}\left( { - x} \right)} \right) = 0\\&\Leftarrow \forall x , {g^{ - 1}}\left( {{f^{ - 1}}\left( x \right)} \right) = - {g^{ - 1}}\left( {{f^{ - 1}}\left( { - x} \right)} \right)\\&\Leftarrow \forall x , f\left( {g\left( {{g^{ - 1}}\left( {{f^{ - 1}}\left( x \right)} \right)} \right)} \right) = f\left( {g\left( { - {g^{ - 1}}\left( {{f^{ - 1}}\left( { - x} \right)} \right)} \right)} \right)\\&\Leftarrow \forall x , f\left( {g\left( {{g^{ - 1}}\left( {{f^{ - 1}}\left( x \right)} \right)} \right)} \right) = - f\left( {g\left( {{g^{ - 1}}\left( {{f^{ - 1}}\left( { - x} \right)} \right)} \right)} \right)\\&\Leftarrow \forall x , x = - \left( { - x} \right).\end{split}
5、设M\left( {a\cos \theta , b\sin \theta } \right),则PQ:xa\cos \theta + yb\sin \theta = {b^2},即\dfrac{x}{{\dfrac{{{b^2}}}{{a\cos \theta }}}} + \dfrac{y}{{\dfrac{b}{{\sin \theta }}}} = 1,于是{S_{\triangle EOF}} = \left| {\dfrac{1}{2} \cdot \dfrac{{{b^2}}}{{a\cos \theta }} \cdot \dfrac{b}{{\sin \theta }}} \right| = \dfrac{{{b^3}}}{a} \cdot \dfrac{1}{{\left| {\sin 2\theta } \right|}}\geqslant \dfrac{{{b^3}}}{a},等号当且仅当\theta = \dfrac{{\rm \pi}}{4}时取得,因此\triangle EOF面积的最小值为\dfrac{{{b^3}}}{a}.
6、(1)若p=1,则a_n=\dfrac{n(n-1)}{2};
若p\ne 1,则a_n=\dfrac{p-p^n}{\left(1-p\right)^2}-\dfrac{(n-1)p^n}{1-p}.
(2)由{a_{n + 1}} = n{p^n} + q{a_n},a_1=0,得\dfrac{a_{n+1}}{q^{n+1}}=\dfrac{a_n}{q^n}+\dfrac{1}{q}\cdot n\cdot \left(\dfrac{p}{q}\right)^n,所以\dfrac{a_{n+1}}{q^{n+1}}=\dfrac{1}{q}\left[\left(\dfrac{p}{q}\right)+2\left(\dfrac{p}{q}\right)^2+3\left(\dfrac{p}{q}\right)^3+\cdots+n\left(\dfrac{p}{q}\right)^n\right],故a_{n+1}=pq^{n-1}+2p^2q^{n-2}+\cdots+np^n.而当\left| p \right| < 1时,数列\left\{np^n\right\}有界,即存在常数M>0,使得\left|np^n\right|<M恒成立,所以\begin{split}\left|a_{n+1}\right|&\leqslant \left|p\right|\cdot\left|q\right|^{n-1}+2\left|p\right|^2\cdot\left|q\right|^{n-2}+\cdots+n\left|p\right|^{n}\\&<M\left(1+\left|q\right|+\left|q\right|^2+\cdots+\left|q\right|^{n-1}\right)\\&<\dfrac{M}{1-\left|q\right|},\end{split}故数列\left\{a_n\right\}有界.
7、法一
令f\left( x \right) = {x^2} + n{\left( {1 - \dfrac{x}{n}} \right)^n}{{\rm e}^x},则只需要证明当x \leqslant n时,f\left( x \right) \geqslant n.而
\begin{split}f'\left( x \right) &= 2x + {{\rm e}^x}\left[ {n{{\left( {1 - \dfrac{x}{n}} \right)}^n} + {n^2}{{\left( {1 - \dfrac{x}{n}} \right)}^{n - 1}}\left( { - \dfrac{1}{n}} \right)} \right]\\&= x\left[ {2 - {{\rm e}^x}{{\left( {1 - \dfrac{x}{n}} \right)}^{n - 1}}} \right].\end{split}
情形1 当n = 1时,有f\left( x \right) = {x^2} + \left( {1 - x} \right){{\rm e}^x},于是f'\left( x \right) = x\left( {2 - {{\rm e}^x}} \right),可得f\left( x \right)在\left( { - \infty , 0} \right)上单调递减,在(0,\ln 2)上单调递增,在(\ln 2,1)上单调递减.因此f\left( x \right)的极小值为f\left( 0 \right) = 1,以及f\left( 1 \right) = 1,原命题得证.
情形2 当n \geqslant 2时,令g\left( x \right) = {{\rm e}^x}{\left( {1 - \dfrac{x}{n}} \right)^{n - 1}},则g'\left( x \right) = {{\rm e}^x} \cdot \dfrac{{1 - x}}{n} \cdot {\left( {1 - \dfrac{x}{n}} \right)^{n - 2}},于是当x = 1时,g\left( x \right)取得最大值{\rm e}{\left( {1 - \dfrac{1}{n}} \right)^{n - 1}}.
由于\ln \left( {1 - \dfrac{1}{n}} \right) < - \dfrac{1}{n},因此{\rm e} < {\left( {1 - \dfrac{1}{n}} \right)^{ - n}}.于是{\rm e}{\left( {1 - \dfrac{1}{n}} \right)^{n - 1}} < {\left( {1 - \dfrac{1}{n}} \right)^{ - 1}} = \dfrac{n}{{n - 1}} \leqslant 2,因此2 - {{\rm e}^x}{\left( {1 - \dfrac{x}{n}} \right)^{n - 1}} > 0,从而f\left( x \right)的最小值为f\left( 0 \right) = n,原命题得证.
法二
由于\ln \left( {1 + \dfrac{x}{n}} \right) < \dfrac{x}{n},于是{{\rm e}^x} > {\left( {1 + \dfrac{x}{n}} \right)^n},从而
\begin{split}n - n{\left( {1 - \dfrac{x}{n}} \right)^n}{{\rm e}^x} &\leqslant n - n{\left( {1 - \dfrac{x}{n}} \right)^n}{\left( {1 + \dfrac{x}{n}} \right)^n}\\&= n - n{\left( {1 - \dfrac{{{x^2}}}{{{n^2}}}} \right)^n}\\&\leqslant n - n\left( {1 - \dfrac{{{x^2}}}{{{n^2}}} \cdot n} \right)\\&= {x^2}.\end{split}其中倒数第二步用到了伯努利不等式.