已知数列{xn}满足lim,求证:\lim\limits_{n\to\infty}\dfrac{x_n-x_{n-1}}{n}=0.
证明:设y_n=x_n-x_{n-1},n\in \mathcal N^*,则原问题转化为已知\lim\limits_{n\to \infty}\left(y_n+y_{n-1}\right)=0,求证:\lim\limits_{n\to\infty}\dfrac{y_n}{n}=0.
根据已知,有\forall \varepsilon>0,\exists N(\varepsilon)\in\mathcal N^*,使得当n>N时,均有\left|y_n+y_{n-1}\right|<\dfrac 12\varepsilon,此时有y_n=\left(y_n+y_{n-1}\right)+(-1)\left(y_{n-1}+y_{n-2}\right)+(-1)^2\left(y_{n-2}+y_{n-3}\right)+\cdots+(-1)^{n-N-1}\left(y_{N+1}+y_{N}\right)+(-1)^{n-N}y_N,从而\left|y_n\right|\leqslant \dfrac 12(n-N)\varepsilon+\left|y_N\right|,从而\dfrac{\left|y_n\right|}{n}\leqslant \dfrac 12\varepsilon -\dfrac{N}{2n}\varepsilon+\dfrac{\left|y_N\right|}{n}<\dfrac 12\varepsilon +\dfrac{\left|y_N\right|}{n},此时只需要取N_0=\max\left\{N(\varepsilon,\left[\dfrac{2\left|y_N\right|}{\varepsilon}\right]+1\right\}即可使得\dfrac{\left|y_n\right|}{n}<\varepsilon,因此\lim_{n\to\infty}\dfrac{\left|y_n\right|}{n}=0,进而原命题得证.