求证:1sin2π2n+1+1sin22π2n+1+⋯+1sin22nπ2n+1=43n(n+1).
证明 设θk=kπ2n+1,k=1,2,⋯,n,则
cos(2n+1)θk+isin(2n+1)θk=(cosθk+isinθk)2n+1=C02n+1cos2n+1θk+C12n+1cos2nθk⋅sinθk⋅i+⋯+C2n+12n+1(sinθk⋅i)2n+1,于是可得C12n+1cos2nθk−C32n+1cos2n−2θksin2θk+⋯+(−1)nC2n+12n+1sin2nθk=sin(2n+1)θk=0,也即C12n+1(1−sin2θk)n−C32n+1(1−sin2θk)n−1sin2θk+⋯+(−1)nC2n+12n+1sin2nθk=0,也即C12n+1(sin−2θk−1)n−C32n+1(sin−2θk−1)n−1+⋯+(−1)nC2n+12n+1=0,因此x=1sin2θk(k=1,2⋯,n)是关于x的方程C12n+1(x−1)n−C32n+1(x−1)n−1+⋯+(−1)nC2n+12n+1=0的n个实数根,它们的和n∑k=11sin2θk=C1n⋅C12n+1+C32n+1C12n+1=2n(n+1)3,因此LHS=2n∑k=11sin2θk=43n(n+1).