巧构二项式证明级数求和

求证:1sin2π2n+1+1sin22π2n+1++1sin22nπ2n+1=43n(n+1)


证明 设θk=kπ2n+1k=1,2,,n,则
cos(2n+1)θk+isin(2n+1)θk=(cosθk+isinθk)2n+1=C02n+1cos2n+1θk+C12n+1cos2nθksinθki++C2n+12n+1(sinθki)2n+1,于是可得C12n+1cos2nθkC32n+1cos2n2θksin2θk++(1)nC2n+12n+1sin2nθk=sin(2n+1)θk=0,也即C12n+1(1sin2θk)nC32n+1(1sin2θk)n1sin2θk++(1)nC2n+12n+1sin2nθk=0,也即C12n+1(sin2θk1)nC32n+1(sin2θk1)n1++(1)nC2n+12n+1=0,因此x=1sin2θk(k=1,2,n)是关于x的方程C12n+1(x1)nC32n+1(x1)n1++(1)nC2n+12n+1=0n个实数根,它们的和nk=11sin2θk=C1nC12n+1+C32n+1C12n+1=2n(n+1)3,因此LHS=2nk=11sin2θk=43n(n+1).

此条目发表在解题展示分类目录,贴了标签。将固定链接加入收藏夹。

发表回复