1.已知P是双曲线C:x2a2−y2b2=1上一点,过P作C的两条渐近线的垂线,垂足分别为A,B,则→PA⋅→PB=_______.
2.已知△ABC满足cosAcosBcosC=18,判断△ABC的形状.
3.求证:1+lnx<x3+x2.
4.已知数列{an}满足a1=1,a2=9,且nan+2−6(n+1)an+1+9(n+2)an=0,求{an}的通项公式.
5.求证:ln(1+x)⩽.
6.求证:对任意正整数n和正实数c,均存在x_0,使得当x>x_0时,有{\rm e}^x>cx^n.
7.已知x>0,求证:{\rm e}^x>x^2+\dfrac{5x}7+1.
参考答案
1.我们熟知双曲线C:\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1上任意一点到两条渐近线的距离之积为\dfrac{a^2b^2}{a^2+b^2},而A,B,P,O四点共圆(O为坐标原点),于是\cos\angle APB=\dfrac{b^2-a^2}{a^2+b^2},因此\overrightarrow{PA}\cdot \overrightarrow{PB}=\dfrac{a^2b^2\left(b^2-a^2\right)}{\left(a^2+b^2\right)^2}.
常规计算 设P(m,n),则有b^2m^2-a^2n^2=a^2b^2.记\angle AOx=\theta,则\tan\theta=\dfrac ba.于是\begin{split} \overrightarrow{PA}\cdot\overrightarrow{PB}=&PA\cdot PB\cdot\cos\angle APB\\=&-PA\cdot PB\cdot\cos{2\theta}\\=&\dfrac{|bm-an|}{\sqrt{a^2+b^2}}\cdot\dfrac{|bm+an|}{\sqrt{a^2+b^2}}\cdot\dfrac{1-\tan^2\theta}{1+\tan^2\theta}\\=&-\dfrac{|b^2m^2-a^2n^2|}{a^2+b^2}\cdot\dfrac{1-\dfrac{b^2}{a^2}}{1+\dfrac{b^2}{a^2}}\\=&-\dfrac{a^2b^2}{a^2+b^2}\cdot\dfrac{a^2-b^2}{a^2+b^2}\\=&\dfrac{a^2b^2(b^2-a^2)}{(a^2+b^2)^2}.\end{split}
2.根据题意,有\cos A\cos B\cos (A+B)+\dfrac 18=0,积化和差,得\cos^2(A+B)+\cos (A-B)\cos (A+B)+\dfrac 14=0,将其看作关于\cos (A+B)的一元二次方程,那么可得\Delta=\cos^2(A-B)-1\geqslant 0,于是可得A=B.类似的,可得B=C.因此A=B=C,\triangle ABC是正三角形.
3.法一 根据均值不等式,有x^3+x^2-\ln x-1=\left(x^3+\dfrac 18+\dfrac 18\right)+\left(x^2+\dfrac 14\right)-\ln x-\dfrac 32 \geqslant \dfrac 74x-\ln x-\dfrac 32,记右侧函数为\varphi(x),则其导函数\varphi'(x)=\dfrac 74-\dfrac 1x,因此\varphi(x)的极小值,亦为最小值等于\varphi\left(\dfrac 47\right)=\ln\dfrac 74-\dfrac 12=\dfrac {\ln \dfrac{49}{16}-1}{2}>0,原不等式得证.
法二 即证明1+2\ln x<x^6+x^4,也即\dfrac{1+2\ln x}{x^5}<x+\dfrac 1x.记左侧函数为f(x),则f(x)的导函数f'(x)=\dfrac{-3-10\ln x}{x^6},其极大值,亦为最大值等于f\left({\rm e}^{-\frac{3}{10}}\right)=\dfrac 25{\rm e}^{\frac 32}<2\leqslant x+\dfrac 1x,因此原不等式得证.
4.由已知条件,可得n\left(a_{n+2}-3a_{n+1}\right)=3(n+2)\left(a_{n+1}-3a_n\right),于是\dfrac{a_{n+2}-3a_{n+1}}{3^{n+1}\cdot (n+1)(n+2)}=\dfrac{a_{n+1}-3a_n}{3^n\cdot n(n+1)},因此可得\dfrac{a_{n+1}-3a_n}{3^n\cdot n(n+1)}=\dfrac{a_2-3a_1}{3^1\cdot 1\cdot 2}=1,进而可得\dfrac{a_{n+1}}{3^{n+1}}-\dfrac{a_n}{3^n}=\dfrac 13n(n+1),累加可得\dfrac{a_n}{3^n}=\dfrac 19 (n-1)n(n+1)+\dfrac 13,这样我们就得到了a_n=3^{n-2}\left(n^3-n+3\right),n\in\mathbf N^*.
5.原不等式即\ln (1+x)\leqslant \dfrac{3(1+x)-3}{2\sqrt{1+x}+1},也即\ln x\leqslant \dfrac{3x^2-3}{4x+2}.我们熟知,当x\geqslant 1时,有\ln x\leqslant \dfrac 12\left(x-\dfrac 1x\right)=\dfrac{x^2-1}{2x}\leqslant \dfrac{3\left(x^2-1\right)}{4x+2},而当0<x<1时,有\ln x\leqslant \dfrac{2(x-1)}{x+1}\leqslant \dfrac{(x-1)(3x+3)}{4x+2},因此原命题得证.
注 实际上,我们有\ln x \leqslant \dfrac{(x-1)(x+5)}{4x+2}\leqslant \dfrac{(x-1)(3x+3)}{4x+2}.
6.我们熟知当x>0时,有{\rm e}^x-x-1>0.于是取积分(以下默认x>0),有\int_0^x\left({\rm e}^x-x-1\right){\rm d}x>0,也即{\rm e}^x-\dfrac 12x^2-x-1>0,进而有\int_0^x\left({\rm e}^x-\dfrac 12x^2-x-1\right){\rm d}x>0,也即{\rm e}^x-\dfrac {1}{3!}x^3-\dfrac{1}{2!}x^2-x-1>0,以此类推,可得{\rm e}^x-\dfrac{1}{(n+1)!}x^{n+1}-\dfrac {1}{n!}x^n-\cdots -x-1>0,从而{\rm e}^x>\dfrac{1}{(n+1)!}x^{n+1}.这样可以得到对任意正整数n和正实数c,取x_0=(n+1)!\cdot c,就有x>x_0时,有{\rm e}^x>\dfrac{1}{(n+1)!}x\cdot x^n>\dfrac{1}{(n+1)!}x_0\cdot x^n=cx^n成立,因此原命题得证.
7.考虑函数\varphi(x)=\left(x^2+\dfrac57x+1\right){\rm e}^{-x},其导函数\varphi'(x)=-{\rm e}^{-x}\left(x-1\right)\left(x-\dfrac 27\right),于是\varphi(x)在\left(0,\dfrac 27\right)上单调递减,在\left(\dfrac 27,1\right)上单调递增,在\left(1,+\infty\right)上单调递减,因为\varphi(0)=1,于是只需要\varphi(1)<1,即{\rm e}>\dfrac {19}7,也即\ln\dfrac{19}7<1.我们熟知\ln\dfrac{1+x}{1-x}<2\left(x+\dfrac 13x^3+\dfrac 15\cdot \dfrac{x^5}{1-x^2}\right),-1<x<1,令x=\dfrac{6}{13},可得\ln\dfrac{19}7<\dfrac{1459932}{1461005}<1,于是原命题得证.
对于{\rm e}>\dfrac {19}7这个事实,我们有进一步的不等式{\rm e}^x>\dfrac{12+6x+x^2}{12-6x+x^2},x>0.