练习题集[90]基础练习

1.f(x),g(x)定义在R上,下列说法正确的是(  )
A.若f(f(x))=f(x),则f(x)=x
B.若f(f(x))=x,则f(x)=x
C.若f(g(x))=x,则g(f(x))=x
D.若f(g(x))=x,则g(x1)=g(x2)等价于x1=x2

2.设A,B为抛物线y2=2px(p>0)上不同的两点,O为坐标原点,则|OA+OB|2|AB|2的最小值为______.

3.已知A,B分别为椭圆x2a2+y2b2=1(a>b>0)的右顶点和上顶点,直线y=kx(k>0)与椭圆交于C,D两点.若四边形ACBD的面积的最大值为2c2,则椭圆的离心率为______.

4.已知实数x,y,z满足xy+z+yz+x+zx+y=1,则x2y+z+y2z+x+z2x+y的值是______.

5.已知数列{xn}满足xn+1=(2n2+3n+1)xn+n+1,nN,x1=3,求数列{xn}的通项公式.

6.已知正整数数列{an}满足a1=2an+1=a2nan+1(nN),求证:数列{an}中的任意两项都互质.

7.已知a,b>0nN,求证:1a+b+1a+2b++1a+nb<n(a+12b)(a+n+12b)


参考答案

1.D.

选项A的反例:f(x)=|x|
选项B的反例:f(x)=x
选项C的反例:f(x)={tanx,xπ2+kπ,1,x=π2+kπ,其中kZg(x)=arctanx

2.4p2

由极化恒等式,所求代数式即4OAOB.设A(2pm2,2pm),B(2pn2,2pn),则4\overrightarrow{OA}\cdot\overrightarrow{OB}=16p^2\left[\left(mn+\dfrac 12\right)^2-\dfrac 14\right]\geqslant -4p^2.当且仅当mn=-\dfrac 12时取等号.

3.\dfrac{\sqrt 2}2

仿射为圆,可得\left(\dfrac 12\cdot \sqrt 2a\cdot 2a\right)\cdot \dfrac ba=2c^2

4.0

为了出现所求的代数式,在题中条件左右两边同乘以(x+y+z),有(x+y+z)\cdot\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)=x+y+z,于是所求代数式的值为\sum_{cyc}\left[(x+y)\cdot \dfrac{z}{x+y}\right]-(x+y+z)=0.

5.根据题意,有x_{n+1}=\dfrac{(n+1)(n+2)}{n^2}x_n+n+1,于是\dfrac{x_{n+1}}{(n+1)^2(n+2)}=\dfrac{x_n}{n^2(n+1)}+\dfrac{1}{(n+1)(n+2)},进而可得\dfrac{x_{n+1}}{(n+1)^2(n+2)}+\dfrac{1}{n+2}=\dfrac{x_n}{n^2(n+1)}+\dfrac{1}{n+1},因此\dfrac{x_n}{n^2(n+1)}+\dfrac{1}{n+1}=\dfrac{x_{n-1}}{(n-1)^2\cdot n}+\dfrac{1}{n}=\cdots =\dfrac{x_1}{2}+\dfrac 12=2,所以x_n=n^2(2n+1),n\in\mathbf N^*

6.根据题意,有a_{n+1}-1=a_n\left(a_n-1\right)=a_n\cdots a_1,于是对任意p,q\in\mathbf N^*p<q,都有 a_p \mid \left( a_q-1\right),因此\left(a_p,a_q\right)=1,因此数列\{a_n\}中任意两项都互质.

7.柯西加裂项 根据题意,有\begin{split} LHS&<\sqrt n\cdot \sqrt{\dfrac{1}{(a+b)^2}+\dfrac{1}{(a+2b)^2}+\cdots +\dfrac{1}{(a+nb)^2}}\\&<\sqrt n \cdot \sqrt{\dfrac{1}{\left(a+\dfrac 12b\right)\left(a+\dfrac 32b\right)}+\dfrac{1}{\left(a+\dfrac 32b\right)\left(a+\dfrac 52b\right)}+\cdots +\dfrac{1}{\left(a+\dfrac{n-1}2b\right)\left(a+\dfrac{n+1}2\right)}}\\&=\sqrt n\cdot \sqrt{\dfrac 1b\left(\dfrac 1{a+\dfrac 12b}-\dfrac{1}{a+\dfrac 32b}+\dfrac{1}{a+\dfrac 32b}-\dfrac 1{a+\dfrac 52b}+\cdots +\dfrac{1}{a+\dfrac{2n-1}2b}-\dfrac{1}{a+\dfrac{2n+1}2b}\right)}\\&=RHS,\end{split}因此原不等式得证.

A-L-G不等式 根据题意,有\begin{split} LHS&=\sum_{i=1}^n\dfrac{2}{\left(a+\dfrac{2i+1}2b\right)+\left(a+\dfrac{2i-1}2b\right)}\\&<\sum_{i=1}^n\dfrac{\ln\left(a+\dfrac{2i+1}2b\right)-\ln\left(a+\dfrac{2i-1}2b\right)}{b}\\&=\dfrac{\ln\left(a+\dfrac {2n+1}2b\right)-\ln\left(a+\dfrac 1b\right)}{b}\\&=n\cdot \dfrac{\ln\left(a+\dfrac {2n+1}2b\right)-\ln\left(a+\dfrac 1b\right)}{\left(a+\dfrac{2n+1}2b\right)-\left(a+\dfrac 12b\right)}\\&<\dfrac{n}{\sqrt{\left(a+\dfrac 12b\right)\left(a+\dfrac{2n+1}2b\right)}}=RHS,\end{split}因此原不等式得证.

此条目发表在练习题集分类目录。将固定链接加入收藏夹。

发表回复