每日一题[163] 均值不等式与裂项求和

2015年高考湖北卷理科数学第22题(压轴题):

已知数列\(\left\{a_n\right\}\)的各项均为正数,\(b_n=n\left(1+\dfrac 1n\right)^na_n\)(\(n\in\mathcal N^*\)),\(\rm e\)为自然对数的底数.

(1)求函数\(f(x)=1+x-{\rm e}^x\)的单调区间,并比较\(\left(1+\dfrac 1n\right)^n\)与\(\rm e\)的大小;

(2)计算\(\dfrac {b_1}{a_1}\),\(\dfrac{b_1b_2}{a_1a_2}\),\(\dfrac{b_1b_2b_3}{a_1a_2a_3}\),并由此推测计算\(\dfrac{b_1b_2\cdots b_n}{a_1a_2\cdots a_n}\)的公式,并给出证明;

(3)令\(c_n=\left(a_1a_2\cdots a_n\right)^{\frac 1n}\),数列\(\{a_n\}\),\(\{c_n\}\)的前\(n\)项和分别记为\(S_n\),\(T_n\),证明:\(T_n<{\rm e}S_n\).


cover(1)    根据已知\[f'(x)=1-{\rm e}^x,\]于是函数\(f(x)\)的单调递增区间是\((-\infty,0)\),单调递减区间是\((0,+\infty)\).

因此由\(f(0)>f\left(\dfrac 1n\right)\)得\[0>1+\dfrac 1n-{\rm e}^{\frac 1n},\]整理得\[\left(1+\frac 1n\right)^n<{\rm e}.\]

(2)  根据已知\[\dfrac{b_n}{a_n}=\dfrac{(n+1)^n}{n^{n-1}},\]于是\[\dfrac{b_1}{a_1}=\dfrac{2^1}{1^0},\dfrac{b_2}{a_2}=\dfrac{3^2}{2^1},\dfrac{b_3}{a_3}=\dfrac{4^3}{3^2},\]因此\[\dfrac{b_1}{a_1}=2,\dfrac{b_1b_2}{a_1a_2}=9,\dfrac{b_1b_2b_3}{a_1a_2a_3}=64.\]进而\[\begin{split}\frac{b_1b_2\cdots b_n}{a_1a_2\cdots a_n}&=\dfrac{2^1}{1^0}\cdot\dfrac{3^2}{2^1}\cdot\frac{4^3}{3^2}\cdots\frac{(n+1)^n}{n^{n-1}}\\&=(n+1)^n.\end{split}\]

(3)证明    根据已知\[\begin{split}c_n&=\left(a_1a_2\cdots a_n\right)^{\frac 1n}\\&=\left(\frac{b_1b_2\cdots b_n}{(n+1)^n}\right)^{\frac 1n}\\&=\frac{\left(b_1b_2\cdots b_n\right)^{\frac 1n}}{n+1}\\&\leqslant \dfrac{b_1+b_2+\cdots +b_n}{n(n+1)}\\&=b_1\cdot\left(\frac 1n-\frac 1{n+1}\right)+b_2\cdot\left(\frac 1n-\frac 1{n+1}\right)+\cdots+b_n\cdot\left(\frac 1n-\frac 1{n+1}\right),\end{split}\]于是\[\begin{split} T_n&\leqslant b_1\cdot\left[\left(\frac 11-\frac 12\right)+\left(\frac 12-\frac 13\right)+\cdots+\left(\frac 1n-\frac 1{n+1}\right)\right]+b_2\cdot\left[\left(\frac 12-\frac 13\right)+\cdots+\left(\frac 1n-\frac 1{n+1}\right)\right]+\cdots+b_n\cdot\left(\frac 1n-\frac 1{n+1}\right)\\&<b_1+\frac{b_2}{2}+\cdots+\frac{b_n}{n}\\&=\left(1+\frac 11\right)^1a_1+\left(1+\frac 12\right)^2a_2\cdots+\left(1+\frac 1n\right)^na_n\\&<{\rm e}\left(a_1+a_2+\cdots+a_n\right)\\&={\rm e}S_n,\end{split}\]因此命题得证.

此条目发表在每日一题分类目录,贴了, , 标签。将固定链接加入收藏夹。

发表回复