每日一题[3664]泰勒展开

2023年浙江大学强基计划数学试题(回忆版)#20

已知 $\left|\lim\limits_{x \rightarrow 0} \dfrac{\left.\ln \left(1+\sin ^2 x\right)-66 \sqrt[3]{2-\cos x}-1\right)}{x^4}\right|=\dfrac{q}{p}$$p $$ q $ 是互素的正整数,则 $ p+q=$_____.

答案    19

解析    根据题意,有qp=|limx0ln(1+sin2x)6(32cosx1)x4|=|limx0sin2x12sin4x+o(sin4x)6(31+2sin2x21)x4|=|limx0(x16x3+o(x4))212x4+o(x4)6(1+23sin2x249sin4x2+o(sin4x2)1)x4|=|limx0(x16x3+o(x4))212x4+o(x4)6(23sin2x249sin4x2+o(sin4x2))x4|=|limx0x213x4+o(x4)12x4+o(x4)6(23(12x148x3+o(116x4))2136x4+o(x4))x4|=|limx0x256x4+o(x4)6(16x2172x4+o(x4)136x4+o(x4))x4|=|limx0x256x4+o(x4)6(16x2124x4+o(x4))x4|=|limx0x256x4+o(x4)x2+14x4+o(x4)x4|=|limx0712x4+o(x4)x4|=|712+limx0o(x4)x4|=|712|=712,于是 p+q=7+12=19

此条目发表在每日一题分类目录,贴了标签。将固定链接加入收藏夹。

发表回复