已知数列 $\left\{a_n\right\}$ 和 $\left\{b_n\right\}$ 满足 $b_1=2 a_1=4$,且 $\begin{cases}a_{n+1}=-a_n-2 b_n,\\b_{n+1}=6\left(a_n+b_n\right)\end{cases}\left(n\in\mathbb N^{\ast}\right)$,则( )
A.$a_{10}=2^{13}-14\times 3^9$
B.$b_{10}=-\dfrac 3 2\times 2^{13}+28\times 3^9$
C.$\lim\limits_{n\rightarrow\infty}\dfrac{a_n}{b_n}=-\dfrac 1 2$
D.$\lim\limits_{n\rightarrow\infty}\dfrac{a_n}{b_n}=-1$
答案 ABC.
解析 根据题意,有\[\begin{cases} b_n=-\dfrac 12(a_{n+1}+a_n),\\ 6a_n=b_{n+1}-6b_n,\end{cases}\iff \begin{cases} b_n=-\dfrac 12(a_{n+1}+a_n),\\ 6a_n=-\dfrac 12(a_{n+2}+a_{n+1})-6\left(-\dfrac 12(a_{n+1}+a_n)\right),\end{cases}\]因此\[a_{n+2}=5a_{n+1}-6a_n,\]其中 $a_1=2$,$a_2=-a_1-2b_1=-10$,根据特征根法,可得\[a_n=8\cdot 2^n-\dfrac{14}3\cdot 3^n,\]于是选项 $\boxed{A}$ 正确. 而\[b_n=-\dfrac 12(a_{n+1}+a_n)=-12\cdot 2^n+\dfrac{28}3\cdot 3^n,\]选项 $\boxed{B}$ 正确. 进而\[\lim\limits_{n\to \infty}\dfrac{a_n}{b_n}=\lim\limits_{n\to \infty}\dfrac{8\cdot 2^n-\dfrac{14}3\cdot 3^n}{-12\cdot 2^n+\dfrac{28}3\cdot 3^n}=\lim\limits_{n\to \infty}\dfrac{8\cdot \left(\dfrac 23\right)^n-\dfrac{14}3}{-12\cdot \left(\dfrac 23\right)^n+\dfrac{28}3} =-\dfrac 12,\]选项 $\boxed{C}$ 正确,选项 $\boxed{D}$ 错误.
综上所述,正确的选项为 $\boxed{A}$ $\boxed{B}$ $\boxed{C}$.
备注 也可以由\[\begin{cases} 3a_{n+1}+2b_{n+1}=3(3a_n+2b_n),\\ 2a_{n+1}+b_{n+1}=2(2a_n+b_n),\end{cases}\iff \begin{cases} a_{n}+2b_{n}=14\cdot 3^{n-1},\\ 2a_{n}+b_{n}=2^{n+2},\end{cases}\]解出 $a_n,b_n$.