已知正数 x,y 满足 √9x2−1+√9y2−1=9xy,则 4x2+y2 的最小值为( )
A.34
B.89
C.1
D.54
答案 C.
解析 由柯西不等式可得9xy=1⋅√9x2−1+√9y2−1⋅1⩽√(9x2−1)+12⋅√12+(9y2−1)=9xy,
等号当 1√9x2−1=√9y2−11 时取得,因此有(9x2−1)(9y2−1)=1,
进而4x2+y2=49(9x2−1)+19(9y2−1)+59⩾2√49(9x2−1)⋅19(9y2−1)+59=1,
等号当 49(9x2−1)=19(9y2−1) 即 (x,y)=(1√6,1√3) 时取得,因此所求最小值为 1.