阿波罗尼奥斯在其著作 《圆锥曲线论》中提出:过椭圆 $\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$($a>b>0$)上任意一点 $P\left(x_0, y_0\right)$ 的切线方程为 $\dfrac{x_0 x}{a^2}+\dfrac{y_0 y}{b^2}=1$.若已知 $\triangle A B C$ 内接于椭圆 $E: \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$($a>b>0$),且坐标原点 $O$ 为 $\triangle A B C$ 的重心,过 $A, B, C$ 分别作椭圆 $E$ 的切线,切线分别相交于点 $D, E, F$,则 $\triangle DEF$ 与 $\triangle ABC$ 的面积之比为_______.
2024年 12月 一 二 三 四 五 六 日 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 标签
-
近期文章
2024年 12月 一 二 三 四 五 六 日 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 标签
只有题目没有解答啊