已知数列 $\left\{a_n\right\}$ 中,$a_1=1$,若 $a_{n+1}=\dfrac{(n+1) a_n}{n+1+a_n}$,则下列结论中正确的是( )
A.$\dfrac{1}{a_{n+1}}-\dfrac{1}{a_n} \geqslant \dfrac{1}{2}$
B.$\dfrac{1}{a_{n+2}}-\dfrac{1}{a_n}<\dfrac{2}{\sqrt{(n+2)(n+1)}}$
C.$\dfrac{1}{a_{2 n}}-\dfrac{1}{a_n} \geqslant \dfrac{1}{2}$
D.$a_n \cdot \ln (n+1)>1$
答案 C.
解析 根据题意,有\[\dfrac 1{a_{n+1}}=\dfrac{1}{a_n}+\dfrac1{n+1}\implies \dfrac{1}{a_n}=\sum_{k=1}^n\dfrac{1}{k}.\]
对于选项 $\boxed{A}$,有\[\dfrac{1}{a_{n+1}}-\dfrac{1}{a_n}=\dfrac{1}{n+1}\leqslant \dfrac 12,\]命题错误;
对于选项 $\boxed{B}$,有\[\dfrac{1}{a_{n+2}}-\dfrac{1}{a_n}=\dfrac{1}{n+1}+\dfrac{1}{n+2}\geqslant 2\sqrt{\dfrac{1}{n+1}\cdot \dfrac{1}{n+2}}=\dfrac{2}{\sqrt{(n+2)(n+1)}},\]命题错误;
对于选项 $\boxed{C}$,有\[\dfrac{1}{a_{2n}}-\dfrac{1}{a_n}=\dfrac 1n+\dfrac1{n+1}+\cdots+ \dfrac{1}{2n}\geqslant \dfrac{1}{2n}+\dfrac{1}{2n}+\cdots+\dfrac{1}{2n}=\dfrac 12,\]命题正确;
对于选项 $\boxed{D}$,有\[\dfrac{1}{a_n}=\sum_{k=1}^n\dfrac 1k\leqslant \int_1^{n+1}\dfrac 1x{ {\rm d}} x=\ln (n+1),\]命题正确. 综上所述,符合题意的结论只有选项 $\boxed{D}$.
备注 事实上,选项 $C$ 给出了调和级数发散的证明.
老师C选项应该是从1/n+1开始吧
对的~