设 f(x)=1010x+10091009x+1010,定义 f(1)(x)=f(x),f(i)(x)=f(f(i−1)(x)),i=2,3,⋯,则 f(n)(x)= _______.
答案 (2019n+1)x+2019n−1(2019n−1)x+2019n+1.
解析 不动点方程 f(f(x))=x 即1009x2−1009=0,解得 x=±1,从而所求迭代函数f(n)(x)+1f(n)(x)−1=2019n⋅x+1x−1,解得f(n)(x)=(2019n+1)x+2019n−1(2019n−1)x+2019n+1.