每日一题[2471]往后递推

复数 $z_{1}, z_{2}, \cdots, z_{100}$ 满足:$z_{1}=3+2 \mathrm{i}$,$z_{n+1}=\overline{z_{n}} \cdot \mathrm{i}^{\mathrm{n}}$($n=1,2, \cdots, 99$)($ \mathrm{i}$ 为虚数单位),则 $z_{99}+z_{100}$ 的值为_______.

答案    $-5+5{\rm i}$.

解析    根据题意,有\[z_{n+2}=\overline{z_{n+1}}\cdot {\rm i}^{n+1}=\overline{\overline{z_n}\cdot {\rm i}^n}\cdot {\rm i}^{n+1}=z_n\cdot {\rm i}^{-n}\cdot {\rm i}^{n+1}=z_n\cdot {\rm i},\]从而\[z_{99}+z_{100}=z_1\cdot {\rm i}^{49}+z_2\cdot {\rm i}^{49}=z_1\cdot {\rm i}+\overline{z_1}\cdot (-1)=-5+5{\rm i}.\]

备注    事实上,有\[z_n=\begin{cases} \left(\dfrac{(n-1)\pi}4+\arctan\dfrac 23:\sqrt{13}\right),&n~\text{是奇数},\\ \left(\dfrac{n\pi}4-\arctan\dfrac 23:\sqrt{13}\right),&n~\text{是偶数}.\end{cases}\]

此条目发表在每日一题分类目录,贴了标签。将固定链接加入收藏夹。

发表回复