已知数列 $\left\{a_{n}\right\}$ 满足 $a_{n}=\sqrt{\dfrac{2 n-1}{4 n^{2}+1}}$,前 $n$ 项和为 $S_{n}$,与 $S_{128}-S_{32}$ 最接近的整数是( )
A.$6$
B.$7$
C.$8$
D.$9$
答案 C.
解析 根据题意,有\[\sqrt{2n+4}-\sqrt{2n+2}<\dfrac{1}{\sqrt{2n+2}}<\sqrt{\dfrac{2n-1}{4n^2+1}}<\dfrac{1}{\sqrt{2n+1}}<\sqrt{2n+1}-\sqrt{2n-1},\]从而\[\sum_{n=33}^{128}\left(\sqrt{2n+4}-\sqrt{2n+2}\right)<S_{128}-S_{32}<\sum_{n=33}^{128}\left(\sqrt{2n+1}-\sqrt{2n-1}\right),\]即\[\sqrt{260}-\sqrt{68}<S_{128}-S_{32}<\sqrt{257}-\sqrt{65},\]进而\[7.8<16.1-8.3<S_{128}-S_{32}<16-8=8,\]因此与 $S_{128}-S_{32}$ 最接近的整数为 $8$.