设 a,b,c,d 为正实数,且 a+b+c+d=4.证明:a2b+b2c+c2d+d2a⩾
解析 齐次化,题中不等式即\sum_{\rm cyc}\left(\dfrac {a^2}b-a\right)\geqslant \dfrac{4(a-b)^2}{a+b+c+d},而LHS=\sum_{\rm cyc}\left(\dfrac{a^2}b+b-2a\right)=\sum_{\rm cyc}\dfrac{(a-b)^2}{b}\geqslant \dfrac{\left(\displaystyle\sum_{\rm cyc}|a-b|\right)^2}{\displaystyle\sum_{\rm cyc}b},而根据绝对值不等式,有|b-c|+|c-d|+|d-a|\geqslant |a-b|,于是\dfrac{\left(\displaystyle\sum_{\rm cyc}|a-b|\right)^2}{\displaystyle\sum_{\rm cyc}b}\geqslant \dfrac{\left(2|a-b|\right)^2}{\displaystyle\sum_{\rm cyc}b}=\dfrac{4(a-b)^2}{a+b+c+d},题中不等式得证.