已知正整数数列 {an} 满足:a4=16,且1a2n+1<1an+1an+1−2n(n+1)<1a2n,
求数列 {an} 的通项公式.
答案 an=n2(n∈N∗)
解析 根据题意,显然有 {an} 单调递增,且有1a21>1a1+1a2−1>1a22>1a2+1a3−13>1a23>1a3+1a4−16>1a24,
由 a4=16,可得1a23>1a3−548>1256⟹a3=9,
进而1a22>1a2−29>181⟹a2=4,
进而1a21>1a1−34>116⟹a1=1.
接下来利用数学归纳法证明,若 ak=k2(k⩾4),那么 ak+1=(k+1)2.此时有1a2k+1<1k2+1ak+1−2k(k+1)<1k4,
解得k4(k+1)k3−k2+k+1<ak+1<k3+k2+k√k4+2k3−3k2+42(k−1),
从而−1+3k+2k21+k−k2+k3<ak+1−(k+1)2<2(k+1)(2k+1)k√k4+2k3−3k2+4+k3+k2−2k−2,
由于(k3−k2+k+1)−(2k2+3k+1)=k3−2k2−2k>0,
于是−1<−1+3k+2k21+k−k2+k3<0,
且0<2(k+1)(2k+1)k√k4+2k3−3k2+4+k3+k2−2k−2<2(k+1)(2k+1)2k3<1,
因此 ak+1−(k+1)2=0,从而 ak+1=(k+1)2,命题得证. 综上所述,数列 {an} 的通项公式为 an=n2(n∈N∗).