每日一题[2119]两边夹

已知正整数数列 {an} 满足:a4=16,且1a2n+1<1an+1an+12n(n+1)<1a2n,

求数列 {an} 的通项公式.

答案    an=n2nN

解析    根据题意,显然有 {an} 单调递增,且有1a21>1a1+1a21>1a22>1a2+1a313>1a23>1a3+1a416>1a24,

a4=16,可得1a23>1a3548>1256a3=9,
进而1a22>1a229>181a2=4,
进而1a21>1a134>116a1=1.
接下来利用数学归纳法证明,若 ak=k2k4),那么 ak+1=(k+1)2.此时有1a2k+1<1k2+1ak+12k(k+1)<1k4,
解得k4(k+1)k3k2+k+1<ak+1<k3+k2+kk4+2k33k2+42(k1),
从而1+3k+2k21+kk2+k3<ak+1(k+1)2<2(k+1)(2k+1)kk4+2k33k2+4+k3+k22k2,
由于(k3k2+k+1)(2k2+3k+1)=k32k22k>0,
于是1<1+3k+2k21+kk2+k3<0,
0<2(k+1)(2k+1)kk4+2k33k2+4+k3+k22k2<2(k+1)(2k+1)2k3<1,
因此 ak+1(k+1)2=0,从而 ak+1=(k+1)2,命题得证. 综上所述,数列 {an} 的通项公式为 an=n2nN).

此条目发表在每日一题分类目录,贴了标签。将固定链接加入收藏夹。

发表回复