每日一题[2083]上界估计

a0,a1,a2,,an 是正整数,且 a0>a1>a2>>an>1,并满足(11a1)+(11a2)++(11an)=2(11a0),试求出 (a0,a1,a2,,an) 的所有可能的解.

答案    (24,4,3,2),(60,5,3,2)

解析    根据题意,有 ak,于是\begin{split}\left(1-\dfrac 12\right)+\left(1-\dfrac 13\right)+\cdots+\left(1-\dfrac{1}{n+1}\right)&\leqslant \left(1-\dfrac 1{a_1}\right)+\left(1-\dfrac{1}{a_2}\right)+\cdots+\left(1-\dfrac{1}{a_n}\right)\\ &=2\left(1-\dfrac{1}{a_0}\right)\\ &<2,\end{split}因此 n\leqslant 3. [[case]]情形一[[/case]] n=1.此时1-\dfrac1{a_1}=2\left(1-\dfrac1{a_0}\right)\iff a_1=\dfrac{a_0}{2-a_0},无解. [[case]]情形二[[/case]] n=2.此时\left(1-\dfrac1{a_1}\right)+\left(1-\dfrac{1}{a_2}\right)=2\left(1-\dfrac1{a_0}\right)\iff \dfrac2{a_0}=\dfrac{1}{a_1}+\dfrac{1}{a_2},\dfrac{1}{a_0}<\dfrac{1}{a_1}<\dfrac{1}{a_2},因此该方程无解. [[case]]情形三[[/case]] n=3.此时\left(1-\dfrac1{a_1}\right)+\left(1-\dfrac{1}{a_2}\right)+\left(1-\dfrac{1}{a_3}\right)=2\left(1-\dfrac1{a_0}\right)\iff 1+\dfrac{2}{a_0}=\dfrac{1}{a_1}+\dfrac1{a_2}+\dfrac{1}{a_3},于是 a_3=2a_2=3,否则\dfrac{1}{a_1}+\dfrac{1}{a_2}+\dfrac{1}{a_3}<\dfrac{1}{2}+\dfrac{1}{4}+\dfrac 15<1,进而\dfrac{2}{a_0}+\dfrac16=\dfrac1{a_1}\iff a_0=\dfrac{12a_1}{6-a_1},其中 a_1\geqslant 4,因此 (a_1,a_0)=(4,24),(5,60). 综上所述,(a_0,a_1,a_2,\cdots,a_n) 的所有可能的解为 (24,4,3,2),(60,5,3,2)

此条目发表在每日一题分类目录,贴了标签。将固定链接加入收藏夹。

发表回复