每日一题[1626]反向迭代

已知数列 $\{a_n\}$满足$a_{n+1}^2-a_{n+1}=a_n$($n\in\mathbb N^{\ast}$).若数列 $\{a_n\}$ 各项单调递增,则首项 $a_1$ 的取值范围是_______;当 $a_1=\dfrac 23$ 时,记 $b_n=\dfrac{(-1)^{n+1}}{a_n-1}$,若 $k<b_1+b_2+\cdots+b_{2019}<k+1$,则整数 $k=$ _______.

答案     $\left[-\dfrac 14,2\right)$;$-5$.

解析     根据题意,有\[a_{n+1}=\dfrac{1+\sqrt{1+4a_n}}{2},\]对应的迭代函数函数 $f(x)=x^2-x$($x\geqslant \dfrac 12$)的反函数 $f^{-1}(x)$,由迭代函数法可得首项 $a_1$ 的取值范围是 $\left[-\dfrac 14,2\right)$.

题中递推公式可变形为\[\dfrac{1}{a_{n+1}-1}=\dfrac{1}{a_n}+\dfrac{1}{a_{n+1}},\]于是\[\begin{split}\sum_{k=1}^{2019}b_k&=\dfrac{1}{a_1-1}-\dfrac{1}{a_2-1}+\dfrac{1}{a_3-1}-\dfrac{1}{a_4-1}+\cdots+\dfrac{1}{a_{2019}-1}\\ &=\dfrac{1}{a_1-1}-\dfrac1{a_1}-\dfrac{1}{a_2}+\dfrac{1}{a_2}+\dfrac1{a_3}-\dfrac1{a_3}-\dfrac1{a_4}+\dfrac1{a_4}+\dfrac{1}{a_5}-\cdots+\dfrac{1}{a_{2018}}+\dfrac{1}{a_{2019}}\\ &=\dfrac{1}{a_1-1}-\dfrac{1}{a_1}+\dfrac{1}{a_{2019}}\\ &=-\dfrac 92+\dfrac{1}{a_{2019}},\end{split}\]而\[\dfrac{2-a_{n+1}}{2-a_n}=\dfrac{1}{1+a_{n+1}}<\dfrac{1}{1+\dfrac23}=\dfrac 35,\]于是\[0<\dfrac{1}{a_{2019}}<\dfrac 12,\]从而 $k=-5$.

此条目发表在每日一题分类目录,贴了标签。将固定链接加入收藏夹。

发表回复