已知整系数多项式 $f(x)=x^5+a_1x^4+a_2x^3+a_3x^2+a_4x+a_5$,若 $f\left(\sqrt 3+\sqrt 2\right)=0$,$f(1)+f(3)=0$,则 $f(-1)=$ _______.
答案 $24$.
解析 根据题意,有\[f(x)=\left(x-\sqrt 3-\sqrt 2\right)\left(x-\sqrt 3+\sqrt 2\right)\left(x+\sqrt 3-\sqrt 2\right)\left(x+\sqrt 3+\sqrt 2\right)(x-m),\]即\[f(x)=(x-m)(x^4-10x^2+1),\]又\[f(1)+f(3)=0,\]可得\[(-8+8m)+(-24+8m)=0\implies m=2,\]于是\[f(-1)=24.\]