每日一题[1422]对称差集

A,B 是有限集,定义:d(A,B)=card(AB)card(AB),其中 card(A) 表示有限集 A 中元素的个数.

命题 ①:对任意有限集 A,BABd(A,B)>0 的充分必要条件;

命题 ②:对任意有限集 A,B,Cd(A,C)d(A,B)+d(B,C).(       )

A.命题 ① 和命题 ② 都成立

B.命题 ① 和命题 ② 都不成立

C.命题 ① 成立,命题 ② 不成立

D.命题 ① 不成立,命题 ② 成立

答案    A.

解析    对于有限集 A,B,设 a,x,b 分别为 AB,AB,BA 的元素个数,则d(A,B)=a+b,

于是d(A,B)=0a=b=0A=B,
因此命题 ① 成立. 对于有限集 A,B,C,设只在 A,B,C 中的元素个数分别为 a,b,c,只不在 A,B,C 中的元素个数分别为 x,y,z,同时在 A,B,C 中的元素个数为 t,则d(A,C)=a+c+z+x,d(A,B)=a+b+x+y,d(B,C)=b+c+y+z,
于是d(A,C)d(A,B)+d(B,C),
等号当且仅当 b=y=0 时取得,因此命题 ② 成立.

此条目发表在每日一题分类目录,贴了标签。将固定链接加入收藏夹。

发表回复