已知 △ABC 的内角 A,B,C 满足sinAcotB+sinBcotA=2sinC2,
求证:A=B.
解析 根据题意,有sin2AcosB+sin2BcosA=2sinAsinBcosA+B2,
记x=A+B2,y=A−B2,
则sin2(x+y)cos(x−y)+sin2(x−y)cos(x+y)=2sin(x+y)sin(x−y)cosx,
即2cosxcosy(sin2x+sin2y)=2cosx(sin2x−sin2y),
从而(1−cosy)[sin2x−(1+cosy)2]=0,
显然有(1+cosy)2>1>sin2x,
于是cosy=1,
从而 y=0,也即 A=B.