已知 M=√2017√2018√2019√⋯√(20172−1)√20172,求不超过 M 的最大整数.

正确答案是2017.
分析与解 考虑到对任意正整数 k⩾2,则√k(k+2)<k+1,于是√(20172−1)√20172<20172,√(20172−2)√(20172−1)√20172<20172−1,√(20172−3)√(20172−2)√(20172−1)√20172<20172−2,⋯,√2018√2019√⋯√(20172−1)√20172<2019,√2017√2018√2019√⋯√(20172−1)√20172<2018,另一方面,有M=√2017√2018√2019√⋯√(20172−1)√20172>√2017√2017√2017√⋯√2017√20172=2017,于是不超过 M 的最大整数为 2017.
注 更一般的命题为:
推广 若 n∈N∗,且 n⩾2,则n<√n√(n+1)√⋯√(n2−1)√n2<n+1.
请问为什么必须k≥2时不等式才成立?
看不清解答……