每日一题[108] 转换起点

如图所示,在三角形\(ABC\)和三角形\(AEF\)中,\(B\)是\(EF\)的中点,\(AB=EF=1\),\(BC=6\),\(CA=\sqrt{33}\),若\(\overrightarrow{AB}\cdot \overrightarrow{AE}+\overrightarrow {AC}\cdot \overrightarrow{AF}=2\),则\(\overrightarrow{EF}\)与\(\overrightarrow{BC}\)夹角的余弦值为_______.

QQ20150503-5


cover正确的答案是\(\dfrac 23\).

虽然题目给出的等式中的向量的起点统一为\(A\),但所求却是以\(B\)为起点的\(\langle \overrightarrow{BC},\overrightarrow{BF}\rangle\),因此考虑将起点转化为\(B\):\[-\overrightarrow{BA}\cdot\left(\overrightarrow{BE}-\overrightarrow{BA}\right)+\left(\overrightarrow{BC}-\overrightarrow{BA}\right)\cdot\left(\overrightarrow{BF}-\overrightarrow{BA}\right)=2,\]化简得\[2\overrightarrow{BA}\cdot\overrightarrow{BA}-\overrightarrow{BC}\cdot\overrightarrow{BA}+\overrightarrow{BC}\cdot\overrightarrow{BF}=2.\]而\[\begin{split}\overrightarrow{BA}\cdot\overrightarrow{BA}&=1,\\\overrightarrow{BC}\cdot\overrightarrow{BA}&=BA\cdot BC\cdot\cos{\angle ABC}=2,\end{split}\]因此有\[\overrightarrow{BC}\cdot\overrightarrow{BF}=2.\]于是所求余弦值为\[\dfrac{\overrightarrow{BC}\cdot\overrightarrow{BF}}{BC\cdot BF}=\dfrac 23.\]

此条目发表在每日一题分类目录,贴了标签。将固定链接加入收藏夹。

每日一题[108] 转换起点》有1条回应

  1. 杨树锋说:

    兰老师解法更直观,我是利用B为中点得到AF⊥BC,但兰老师的解法更像通法

发表评论