已知数列$\{a_n\}$满足$a_n=\left(\sqrt 2+1\right)^n-\left(\sqrt 2-1\right)^n$($n\in\mathbb N^*$),则$\left[a_{2017}\right]$的个位数字是______.
分析与解 根据题意,有$a_1=2$,$a_2=4\sqrt 2$,$a_3=14$,且\[a_{2n+1}=\left(\sqrt 2+1\right)\cdot \left(3+2\sqrt 2\right)^n-\left(\sqrt 2-1\right)\cdot \left(3-2\sqrt 2\right)^n,\]因为$3+2\sqrt 2$与$3-2\sqrt 2$是方程$x^2-6x+1=0$的根,由特征根法知\[a_{2n+3}=6a_{2n+1}-a_{2n-1},\]于是数列$\{a_n\}$中的奇数项的尾数分别为\[\underbrace{2,4,2,8,6,8},\underbrace{2,4,2,8,6,8},\cdots,\]于是\[\left[a_{2017}\right]=\left[a_1\right]=2.\]
特征根法是求数列通项公式的一种重要方法,下面给出一道思考练习题:
已知$x+\dfrac 1x=\dfrac{\sqrt 5+1}2=2\cos\dfrac {\pi}5$,求$x^{2000}+\dfrac{1}{x^{2000}}$的值.
正确答案是$2$.
解 设$a_n=x^n+\dfrac{1}{x^n}$,$n\in\mathbb N^*$,则有\[a_{n+2}=a_{n+1}\cdot a_1-a_n,\]对应的特征方程为\[x^2-\dfrac{\sqrt 5+1}2x+1=0,\]因为$\dfrac {1+\sqrt 5}2=2\cos\dfrac {\pi}5$,于是其特征根为$\cos \dfrac{\pi}5\pm {\rm i}\sin\dfrac{\pi}5$.进而可得\[a_n=\left(\cos \dfrac{\pi}5+{\rm i}\sin\dfrac{\pi}5\right)^n+\left(\cos \dfrac{\pi}5- {\rm i}\sin\dfrac{\pi}5\right)^n=2\cos\dfrac{n\pi}5,\]因此原式的值为\[a_{2000}=2\cos\left(400\pi\right)=2.\]