已知$x\in\left(0,\dfrac{\pi}2\right)$,则$$\dfrac{\sin x+\cos x}{\sin x+\tan x}+\dfrac{\tan x+\cot x}{\cos x+\tan x}+\dfrac{\sin x+\cos x}{\cos x+\cot x}+\dfrac{\tan x+\cot x}{\sin x+\cot x}$$的最小值为_______.
分析与解 根据题意,设原式为$M$,由柯西不等式知\[\begin{split}&\left(\sin x+\cos x\right)\cdot \left(\dfrac{1}{\sin x+\tan x}+\dfrac{1}{\cos x+\cot x}\right)\\&\geqslant \dfrac{4\left(\sin x+\cos x\right)}{\sin x+\cos x+\tan x+\cot x},\end{split}\]同时\[\begin{split}&\left(\tan x+\cot x\right)\left(\dfrac{1}{\cos x+\tan x}+\dfrac{1}{\sin x+\cot x}\right)\\&\geqslant \dfrac{4\left(\tan x+\cot x\right)}{\sin x+\cos x+\tan x+\cot x},\end{split}\]两式相加得$$M\geqslant\dfrac{4\left(\sin x+\cos x\right)+4\left(\tan x+\cot x\right)}{\sin x+\cos x+\tan x+\cot x}=4.$$等号当$x=\dfrac{\pi}4$时取得.因此所求的最小值为$4$.
下面给出一道练习:
已知$x,y,z>0$,$A=\sqrt{x+2}+\sqrt{y+5}+\sqrt{z+10}$,$B=\sqrt{x+1}+\sqrt{y+1}+\sqrt{z+1}$,则$A^2-B^2$的最小值为_______.
正确答案是$36$.
解 设$X=\sqrt{x+2}+\sqrt{x+1}$,$Y=\sqrt{y+5}+\sqrt{y+1}$,$Z=\sqrt{z+10}+\sqrt{z+1}$,则有\[\begin{split}A^2-B^2&=(A+B)(A-B)\\&=\left(X+Y+Z\right)\left(\dfrac 1X+\dfrac 4Y+\dfrac 9Z\right)\\&\geqslant (1+2+3)^2\\&=36,\end{split}\]等号当$X:Y:Z=1:2:3$时取得.因此所求的最小值为$36$.