在$\triangle ABC$中,求$m=\sin A+\sin B+\sin C$的最大值.

正确答案是$\dfrac{3\sqrt 3}2$.
分析与解 在$\triangle ABC$中,有\[\begin{split}m&=\sin A+\sin B+\sin (A+B)\\&=\sin A+\sin B+\sin A\cos B+\cos A\sin B\\&=(1+\cos B)\sin A +\sin B\cos A+\sin B\\&\leqslant \sqrt{(1+\cos B)^2+\sin ^2B}+\sin B\\&=\sqrt {2(1+\cos B)}+\sin B\\&=2\cos\dfrac B2+2\sin \dfrac B2\cos\dfrac B2\\&=2\cos\dfrac B2\left(1+\sin \dfrac B2\right)\\&=2\sqrt{\left(1-\sin^2\dfrac B2\right)\left(1+\sin\dfrac B2\right)^2}\\&=2\cdot \dfrac{1}{\sqrt 3}\cdot \sqrt{\left(3-3\sin \dfrac B2\right)\left(1+\sin \dfrac B2\right)\left(1+\sin \dfrac B2\right)\left(1+\sin \dfrac B2\right)}\\&\leqslant 2\cdot \dfrac{1}{\sqrt 3}\cdot \sqrt{\left(\dfrac 64\right)^4}\\&=\dfrac{3\sqrt 3}2,\end{split}\]等号当$(A,B)=\left(\dfrac{\pi}3,\dfrac{\pi}3\right)$时可以取得.因此所求$m$的最大值为$\dfrac{3\sqrt 3}2$.