已知\(a>0\),\(a^2-2ab+c^2=0\),\(bc>a^2\),试比较\(a,b,c\)的大小.
根据题意,有\[\begin{cases}1-2\cdot\dfrac ba+\left(\dfrac ca\right)^2=0\\\dfrac ba\cdot\dfrac ca>1\end{cases}\]
令\(\dfrac ba=x\),\(\dfrac ca=y\),则\(y^2-2x+1=0\)且\(xy>1\).
由于\(b=\dfrac{a^2+c^2}{2a}>0\),由\(bc>a^2>0\),于是\(x,y>0\).
用规划方法,可得\(x>y>1\),于是\(b>c>a\).