每日一题[798]数列与不等式

已知数列{an}{bn}满足a1=2bn=2(an+2)an+1an
(1)若bn=4an,求证:ann+22
(2)若(bn+1bn)an=2(bn+2)b1=3,求证:an<18

分析与解 (1)根据题意,有an+1=an+1an+12,

显然有an>0,从而an+1an>12,结合a1=2可知原命题成立;

进一步,由于a2n+1=a2n+1a2n+an+1an+94,

于是a2n+1a2n>n+22+94=2n+134,
于是可得当n2时,有a2na21>14n2+3n134,
于是an14n2+3n+34,nN.

(2) 根据题意,有{(an+1an)bn=2(an+2),(bn+1bn)an=2(bn+2),
xn=an+2yn=bn+2,可得{(xn+1xn)yn=2xn+1,(yn+1yn)xn=2yn+1,
两式相比,可得(xn+1xn)yn(yn+1yn)xn=xn+1yn+1,
也即xn+1xnxnxn+1=yn+1ynynyn+1,
从而1xn+11yn+1=1xn1yn,
于是有1xn1yn=1415=120<1xn,
因此xn<20,也即an<18,命题得证.

此条目发表在每日一题分类目录,贴了标签。将固定链接加入收藏夹。

发表回复