已知数列$\{a_n\}$和$\{b_n\}$满足$a_1=2$,$b_n=\dfrac{2(a_n+2)}{a_{n+1}-a_n}$.
(1)若$b_n=4a_n$,求证:$a_n\geqslant \dfrac{n+2}2$;
(2)若$(b_{n+1}-b_n)a_n=2(b_n+2)$且$b_1=3$,求证:$a_n<18$.
分析与解 (1)根据题意,有\[a_{n+1}=a_n+\dfrac{1}{a_n}+\dfrac 12,\]显然有$a_n>0$,从而$a_{n+1}-a_n>\dfrac 12$,结合$a_1=2$可知原命题成立;
进一步,由于\[a_{n+1}^2=a_n^2+\dfrac{1}{a_n^2}+a_n+\dfrac{1}{a_n}+\dfrac 94,\]于是\[a_{n+1}^2-a_n^2>\dfrac{n+2}2+\dfrac 94=\dfrac{2n+13}4,\]于是可得当$n\geqslant 2$时,有\[a_{n}^2-a_1^2>\dfrac 14n^2+3n-\dfrac{13}4,\]于是\[a_n\geqslant \sqrt{\dfrac 14n^2+3n+\dfrac 34},n\in\mathbb N^*.\]
(2) 根据题意,有\[\begin{cases}(a_{n+1}-a_n)b_n=2(a_n+2),\\ (b_{n+1}-b_n)a_n=2(b_n+2),\end{cases}\]令$x_n=a_n+2$,$y_n=b_n+2$,可得\[\begin{cases}(x_{n+1}-x_n)y_n=2x_{n+1},\\ (y_{n+1}-y_n)x_n=2y_{n+1},\end{cases}\]两式相比,可得\[\dfrac{(x_{n+1}-x_n)y_n}{(y_{n+1}-y_n)x_n}=\dfrac{x_{n+1}}{y_{n+1}},\]也即\[\dfrac{x_{n+1}-x_n}{x_n\cdot x_{n+1}}=\dfrac{y_{n+1}-y_n}{y_n\cdot y_{n+1}},\]从而\[\dfrac{1}{x_{n+1}}-\dfrac{1}{y_{n+1}}=\dfrac{1}{x_n}-\dfrac{1}{y_n},\]于是有\[\dfrac{1}{x_n}-\dfrac{1}{y_n}=\dfrac 14 -\dfrac 15=\dfrac{1}{20}<\dfrac 1{x_n},\]因此$x_n<20$,也即$a_n<18$,命题得证.