已知数列{an}和{bn}满足a1=2,bn=2(an+2)an+1−an.
(1)若bn=4an,求证:an⩾n+22;
(2)若(bn+1−bn)an=2(bn+2)且b1=3,求证:an<18.
分析与解 (1)根据题意,有an+1=an+1an+12,
显然有an>0,从而an+1−an>12,结合a1=2可知原命题成立;
进一步,由于a2n+1=a2n+1a2n+an+1an+94,
于是a2n+1−a2n>n+22+94=2n+134,
于是可得当n⩾2时,有a2n−a21>14n2+3n−134,
于是an⩾√14n2+3n+34,n∈N∗.
(2) 根据题意,有{(an+1−an)bn=2(an+2),(bn+1−bn)an=2(bn+2),
令xn=an+2,yn=bn+2,可得{(xn+1−xn)yn=2xn+1,(yn+1−yn)xn=2yn+1,
两式相比,可得(xn+1−xn)yn(yn+1−yn)xn=xn+1yn+1,
也即xn+1−xnxn⋅xn+1=yn+1−ynyn⋅yn+1,
从而1xn+1−1yn+1=1xn−1yn,
于是有1xn−1yn=14−15=120<1xn,
因此xn<20,也即an<18,命题得证.