已知存在满足$\alpha,\beta,\alpha+\beta$均为锐角的$\alpha,\beta$使得方程$\sin\dfrac{\alpha}2=k\cos\beta$有解,则$k$的取值范围是______.
正确的答案是$\left(0,\dfrac{\sqrt 2}2\right)$.
分析 考虑此问题中,对$\alpha ,\beta $的限制只有范围,考虑先固定$\alpha$,让$\beta $变化,看看$k$的变化情况,此时$\beta \in\left(0,\dfrac {\pi}2-\alpha \right)$,所以$$\cos\beta\in\left(\cos\left(\dfrac {\pi}2-\alpha\right),1\right)=(\sin\alpha,1),$$于是$k$的范围可以用$\alpha $表示出来,再让$\alpha $在$\left(0,\dfrac {\pi}2\right)$内变化,即可得到$k$的取值范围.
解 根据题意,有\[\cos\left(\dfrac{\pi}2-\alpha\right)<\cos\beta<1,\]于是
\[\sin\dfrac{\alpha}2<k=\dfrac{\sin\dfrac{\alpha}2}{\cos\beta}<\dfrac{\sin\dfrac{\alpha}2}{\sin\alpha}=\dfrac{1}{2\cos\dfrac{\alpha}2},\]$\alpha \to 0$时,$k\to 0$;当$\alpha \to\dfrac {\pi}2,\beta \to 0$时,$k\to \dfrac {\sqrt 2}2$,因此$k$的取值范围是$\left(0,\dfrac{\sqrt 2}2\right)$.