已知数列{xn}满足xn+1=xn−lnxn,且x1=e,求证:n∑k=1xk−xk+1xk√xk<1.
证明 因为x−lnx>1,所以xn>1恒成立,于是有xn+1−xn=−lnxn<0,所以数列{xn}单调递减,且xn>1.
方法一 根据题意,有n∑k=1xk−xk+1xk√xk<n∑k=1xk−xk+1xk√xk+1<n∑k=12(xk−xk+1)xk√xk+1+xk+1√xk=2n∑k=1(1√xk+1−1√xk)<2(1−1√e)<45.
方法二 设f(x)=x−lnx,考虑f(x)−√x=x−lnx−√x,换元后等价于函数g(t)=t2−2lnt−t,而g′(t)=2t2−t−2t,于是函数g(t)在(0,1+√174]上单调递减,在(1+√174,√e]上单调递增.又g(1)=0,g(√2)=2−ln2−√2<0,于是当x∈(1,2)时,有f(x)<√x.因此n∑k=1xk−xk+1xk√xk<x1−x2x1√x1+n∑k=2xk−xk+1xkxk+1=x1−x2x1√x1+n∑k=2(1xk+1−1xk)<1e√e+1−1e−1<23.
方法三 根据题意,有n∑k=1xk−xk+1xk√xk<n∑k=1xk−xk+1xk√xk+1<n∑k=1xk−xk+1xk<n∑k=1xk+xk+12xk⋅(lnxk−lnxk+1)<n∑k=1(lnxk−lnxk+1)<1.
方法四 根据题意,有Sn=n∑k=1xk−xk+1xk√xk=n∑k=1lnxkx32k<e−32+ln(e−1)(e−1)32+n∑k=3(xk−1).
另一方面,有xn+1−1=xn−1−lnxn,于是xn+1−1xn−1=1−lnxnxn−1,容易证明当n⩾2时,有1<xn⩽e−1,于是xn+1−1xn−1⩽1−ln(e−1)e−2<14,用到了函数y=lnxx−1在(1,e−1)上单调递减.于是当n⩾3时,有xn⩽1+14n−3⋅(e−2−ln(e−1)),于是Sn<e−32+ln(e−1)(e−1)32+e−2−ln(e−1)1−14=e−32+ln(e−1)(e−1)32+43(e−2−ln(e−1))<1.