(2011年广东卷)设$b>0$,数列$\{a_n\}$满足$a_1=b$,$a_n=\dfrac{nba_{n-1}}{a_{n-1}+2n-2}$($n\geqslant 2$,$n\in\mathcal N^*$).
(1) 求数列$\{a_n\}$的通项公式;
(2) 证明:对于一切正整数$n$,$a_n\leqslant \dfrac{b^{n+1}}{2^{n+1}} +1$.
分析与解 (1) 当$b=2$时,$\dfrac{n}{a_n}=\dfrac{n-1}{a_{n-1}}+\dfrac 12$,则数列$\left\{\dfrac{n}{a_n}\right\}$是以$\dfrac{1}{a_1}=\dfrac 12$为首项,$\dfrac 12$为公差的等差数列,于是$\dfrac{n}{a_n}=\dfrac n2$,从而$a_n=2$.
当$b\neq 2$时,
法一 有\[\begin{split} a_1&=b,\\ a_2&=\dfrac{2b^2}{b+2}=\dfrac{2b^2(b-2)}{b^2-2^2},\\ a_3&=\dfrac{3b^3}{b^2+2b+4}=\dfrac{3b^3(b-2)}{b^3-2^3},\end{split} \]猜想$a_n=\dfrac{nb^n(b-2)}{b^n-2^n}$,下面用数学归纳法证明.
当$n=1$时,猜想显然成立;
假设当$n=k$时,$a_k=\dfrac{kb^k(b-2)}{b^k-2^k}$,则$$\begin{split} a_{k+1}=&\dfrac{(k+1)b\cdot a_k}{a_k+2k}\\=&\dfrac{(k+1)b\cdot kb^k(b-2)}{kb^k(b-2)+2k\cdot\left(b^k-2^k\right)}\\=&\dfrac{(k+1)b^{k+1}(b-2)}{b^{k+1}-2^{k+1}},\end{split} $$所以当$n=k+1$时猜想亦成立.
综上,猜想得证,因此$a_n=\dfrac{nb^n(b-2)}{b^n-2^n}$,$n\in\mathcal N^*$.
法二 由$$\dfrac{n}{a_n}+\dfrac{1}{2-b}=\dfrac 2b\left(\dfrac{n-1}{a_{n-1}}+\dfrac{1}{2-b}\right),$$可得数列$\left\{\dfrac{n}{a_n}+\dfrac{1}{2-b}\right\}$是以$\dfrac{2}{b(2-b)}$为首项,$\dfrac 2b$为公比的等比数列,于是$$\dfrac{n}{a_n}+\dfrac{1}{2-b}=\dfrac{2}{b(2-b)}\cdot\left(\dfrac 2b\right)^{n-1}=\dfrac{1}{2-b}\cdot\left(\dfrac{2}{b}\right)^n,$$于是$a_n=\dfrac{nb^n(2-b)}{2^n-b^n}$.
(2) 当$b=2$时,$a_n=2$,$\dfrac{b^{n+1}}{2^{n+1}}+1=2$,于是$$a_n=\dfrac{b^{n+1}}{2^{n+1}}+1,$$从而原不等式成立;
当$b\neq 2$时,
法一 欲证明不等式即$$\dfrac{nb^n(2-b)}{2^n-b^n}\leqslant \dfrac{b^{n+1}}{2^{n+1}}+1,$$整理知也即证$$\dfrac{\dfrac{b^{n+1}}{2^n}-\dfrac{2^{n+1}}{b^n}}{b-2}\geqslant 2n+1.$$设不等式左侧为$b_n$,注意到$$\left(\dfrac{b^{n+1}}{2^n}-\dfrac{2^{n+1}}{b^n}\right)\left(\dfrac b2 +\dfrac 2b\right)=\dfrac{b^{n+2}}{2^{n+1}}-\dfrac{2^{n+2}}{b^{n+1}}+\dfrac{b^n}{2^{n-1}}-\dfrac{2^n}{b^{n-1}},$$于是$$b_{n+1}+b_{n-1}=\left(\dfrac b2+\dfrac 2b\right)\cdot b_n\geqslant 2b_n,$$所以$$b_{n+1}-b_n\geqslant b_n-b_{n-1}.$$考虑到$$b_2-b_1=\dfrac{\dfrac {b^3}{4}-\dfrac{8}{b^2}-\dfrac{b^2}{2}+\dfrac 4b}{b-2}=\dfrac {b^2}{4}+\dfrac{4}{b^2}\geqslant 2,$$而$$b_1=\dfrac{b^2+2b+4}{2b}\geqslant 3,$$于是$b_n\geqslant 2n+1$.
法二 用分析法,有\[\begin{split} &a_n=\dfrac{b^{n+1}}{2^{n+1}}+1\\&\Leftarrow
\dfrac{nb^n(2-b)}{2^n-b^n}\leqslant \dfrac{b^{n+1}}{2^{n+1}}+1 \\
&\Leftarrow \dfrac{n}{2^{n-1}+2^{n-2}b+2^{n-3}b^2+\cdots +2b^{n-2}+b^{n-1}}\leqslant \dfrac{b}{2^{n+1}}+\dfrac{1}{b^n}\\
&\Leftarrow n\leqslant \dfrac{2^{n-1}}{b^n}+\dfrac{2^{n-2}}{b^{n-1}}+\dfrac{2^{n-3}}{b^{n-2}}+\cdots +\dfrac {2}{b^2}+\dfrac 1b+\dfrac b{2^2}+\dfrac{b^2}{2^3}+\cdots +\dfrac{b^{n-1}}{2^n}+\dfrac{b^n}{2^{n+1}},\end{split} \]由均值不等式,上述不等式成立,因此原命题得证.