已知n∈N∗,求证:1n+1+1n+2+⋯+13n+1<1110.
分析与解 设待证不等式左边为Sn,则Sn+1−Sn=13n+2+13n+3+13n+4−1n+1=2(3n+2)(3n+3)(3n+4),于是原不等式等价于证明25⋅6⋅7+28⋅9⋅10+⋯+2(3n+2)(3n+3)(3n+4)<1110−S1,也即Tn=15⋅6⋅7+18⋅9⋅10+⋯+1(3n+2)(3n+3)(3n+4)<1120,考虑通项1(3n+2)(3n+3)(3n+4)=127⋅1(n+23)(n+1)(n+43)<127⋅1n(n+1)(n+2)=154⋅[1n(n+1)−1(n+1)(n+2)],后移放缩起点,有Tn<15⋅6⋅7+154⋅16<1120,因此原不等式得证.
思考与总结 如果利用积分放缩,可得Sn<ln3+13n+1,此时对n有要求(事实上为n⩾240).
老师你好,后移放缩起点后面应该是Sn-S1<1/120.