已知$f(x)$是定义在$(0,+\infty)$上的单调函数,且对任意$x>0$,有$f(x)\cdot f\left(f(x)+\dfrac 1x\right)=1$,求$f(x)$.
分析与解 根据题意,有$$f\left(f(x)+\dfrac 1x\right)\cdot f\left(f\left(f(x)+\dfrac 1x\right)+\dfrac{1}{f(x)+\dfrac 1x}\right)=1,$$又$$f(x)\cdot f\left(f(x)+\dfrac 1x\right)=1,$$于是$$f\left(f\left(f(x)+\dfrac 1x\right)+\dfrac{1}{f(x)+\dfrac 1x}\right)=f(x).$$由于$f(x)$是单调函数,因此$$f\left(f(x)+\dfrac 1x\right)+\dfrac{1}{f(x)+\dfrac 1x}=x,\ \text{即} \ \dfrac{1}{f(x)}+\dfrac{1}{f(x)+\dfrac 1x}=x,$$解得$f(x)=\dfrac{1+\sqrt 5}{2x}$或$f(x)=\dfrac{1-\sqrt 5}{2x}$.经验证,这两个函数均符合题意,这样就得到了所有符合题意的$f(x)$.