已知数列{an}满足a1=1,an+1=√a2n−2an+3−1,求证:a1+a3+a5+⋯+a2n−1<12n+23.
分析 迭代函数为f(x)=√x2−2x+3−1,解不动点方程x=√x2−2x+3−1,得不动点为x=12,考虑采用不动点裂项.当然,欲证明的结论中也包含了足够的提示信息.
解 设f(x)=√x2−2x+3−1,则an+1=f(an).容易证明函数f(x)在(−∞,1]上单调递减,且f(12)=12.
接下来用数学归纳法证明
引理 对一切正整数n,均有√2−1⩽
当n=1时,由于a_1=1,a_2=\sqrt 2-1,于是命题显然成立;
假设命题对n=k(k\in\mathcal N^*)成立,即\sqrt 2-1\leqslant a_{2k}<\dfrac 12<a_{2k-1}\leqslant 1,则由于f(x)在(-\infty ,1]上单调递减,有f(\sqrt 2-1)\geqslant f(a_{2k})>f\left(\dfrac 12\right)>f(a_{2k-1})\geqslant f(1),即\sqrt 2-1\leqslant a_{2k}<\dfrac 12<a_{2k+1}\leqslant 1,进而\sqrt 2-1\leqslant a_{2k+2}<\dfrac 12<a_{2k+1}\leqslant 1,即命题在n=k+1时也成立.
综上所述,引理得证.
根据已知,可得a_{n+1}-\dfrac 12=\sqrt{a_n^2-2a_n+3}-\dfrac 32=\dfrac{\left(a_n-\dfrac 12\right)\left(a_n-\dfrac 32\right)}{\sqrt{a_n^2-2a_n+3}+\dfrac 32},于是\dfrac{a_{n+1}-\dfrac 12}{a_n-\dfrac 12}=\dfrac{a_n-\dfrac 32}{\sqrt{a_n^2-2a_n+3}+\dfrac 32}.根据引理,有\left|\dfrac{a_n-\dfrac 32}{\sqrt{a_n^2-2a_n+3}+\dfrac 32}\right|<\dfrac 12,于是可得\dfrac{a_{2n+1}-\dfrac 12}{a_{2n-1}-\dfrac 12}<\dfrac 14,从而\left(a_1-\dfrac 12\right)+\left(a_3-\dfrac 12\right)+\cdots +\left(a_{2n-1}-\dfrac 12\right)<\dfrac{1-\dfrac 12}{1-\dfrac 14}=\dfrac 23,因此原命题得证.