每日一题[461]差分复差分

已知$\sqrt{S_n}=\lambda a_n+c$,$a_n>0$,$a_1+a_3=2a_2$,求证:$\{a_n\}$是等差数列.


cover

   根据已知,有$$\begin{cases} a_1=(\lambda a_1+c)^2,\\ a_1+a_2=(\lambda a_2+c)^2,\\ a_1+a_2+a_3=(\lambda a_3+c)^2,\end{cases} $$设$a_3-a_2=a_2-a_1=d$,作差,有$$\begin{cases} a_2=(\lambda a_1+\lambda a_2+2c)\cdot \lambda d,\\ a_3=(\lambda a_2+\lambda a_3+2c)\cdot \lambda d,\end{cases} $$再次作差,有$$d=2\lambda d\cdot \lambda d,$$显然$d\neq 0$,于是$2\lambda^2=\dfrac 1d$.从而由$$a_2=\dfrac 12a_1+\dfrac 12a_2+2\lambda cd$$可得$4\lambda c=1$,又$c=\sqrt{a_1}-\lambda a_1$,从而有$$1=4\lambda \sqrt{a_1}-4\lambda^2 a_1,$$即$\left(2\lambda \sqrt{a_1}-1\right)^2=0$,从而$a_1=\dfrac{1}{4\lambda^2}=\dfrac d2$.于是$$c=\sqrt{a_1}-\lambda a_1=\dfrac 12\sqrt{\dfrac d2},$$即$c^2=\dfrac 18d$.

接下来用数学归纳法证明$$a_n=\left(n-\dfrac 12\right)d,n\in \mathcal N^*.$$当$n=1,2,3$时,命题成立;

当假设当$n\leqslant k$($k\geqslant 3$且$k\in\mathcal N^*$)时命题成立,即$$S_k=\dfrac 12d\cdot k^2+\left(a_1-\dfrac d2\right)k=\dfrac 12dk^2,$$于是由题设得$$a_{k+1}+\dfrac 12dk^2=\lambda^2a_{k+1}^2+2\lambda ca_{k+1}+c^2,$$即$$\left[a_{k+1}-\left(k+\dfrac 12\right)d\right]\cdot\left[a_{k+1}+\left(k-\dfrac 12\right)d\right]=0,$$因此$a_{k+1}=\left(k+\dfrac 12\right)d$.

综上所述,欲证命题成立,因此$\{a_n\}$是等差数列.

 由题目条件,将$\lambda ,c,a_1$都用$d$表示,即$$4\lambda c=1,2\lambda ^2d=1,a_1=\dfrac d2,$$之后也可以不用数列归纳法,直接证明结论.此时题中条件可以化简为$$2dS_n=a_n^2+a_nd+\dfrac 14d^2,$$于是有$$2dS_{n-1}=a_{n-1}^2+a_{n-1}d+\dfrac 14d^2,n\geqslant 2$$两式相减化简得$$(a_n+a_{n-1})(a_n-a_{n-1}-d)=0,$$结合条件$a_n>0$即得数列$\{a_n\}$为等差数列.

此条目发表在每日一题分类目录,贴了标签。将固定链接加入收藏夹。

发表回复